1887

Abstract

cytoplasmic polyhedrosis virus is a segmented dsRNA virus of the family . Segment 2 (S2)-encoded RNA-dependent RNA polymerase (RdRp) helps the virus to propagate its genome in the host cell of the silkworm, . Cloning, expression, purification and functional analysis of individual domains of RdRp have demonstrated that the purified domains interact . The central polymerase domain (PD) shows nucleotide binding properties, but neither the N-terminal domain (NTD) nor the C-terminal domain (CTD). Isolated PD does not exhibit RdRp activity but this activity can be reconstituted when all three domains are included in the reaction mixture. Molecular dynamics simulation suggests that the isolated PD has increased internal motions in comparison to when it is associated with the NTD and CTD. The motions of the separated PD may lead to the formation of a less accessible RNA template-binding channel and, thus, impair RdRp activity.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000463
2016-07-01
2020-01-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/7/1709.html?itemId=/content/journal/jgv/10.1099/jgv.0.000463&mimeType=html&fmt=ahah

References

  1. Biswas P., Kundu A., Ghosh A. K.. 2014a; Genome segment 4 of Antheraea mylitta cytoplasmic polyhedrosis virus encodes RNA triphosphatase and methyltransferases. J Gen Virol96:95–105 [CrossRef]
    [Google Scholar]
  2. Biswas P., Kundu A., Ghosh A. K.. 2014b; Genome segment 5 of Antheraea mylitta cytoplasmic polyhedrosis virus encodes a bona fide guanylyltransferase. Virol J11:1–13 [CrossRef]
    [Google Scholar]
  3. Bradford M. M.. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem131:499–503
    [Google Scholar]
  4. Chakrabarti M., Ghorai S., Mani S. K. K., Ghosh A. K.. 2010; Molecular characterization of genome segments 1 and 3 encoding two capsid proteins of Antheraea mylitta cytoplasmic polyhedrosis virus. Virology J7:181–191 [CrossRef]
    [Google Scholar]
  5. Chavali V. R., Ghosh A. K.. 2007; Molecular cloning, sequence analysis and expression of genome segment 7 (S7) of Antheraea mylitta cypovirus (AmCPV) that encodes a viral structural protein. Virus Genes35:433–441 [CrossRef][PubMed]
    [Google Scholar]
  6. Chavali V. R., Madhurantakam C., Ghorai S., Roy S., Das A. K., Ghosh A. K.. 2008; Genome segment 6 of Antheraea mylitta cypovirus encodes a structural protein with ATPase activity. Virology 377:7–18 [CrossRef][PubMed]
    [Google Scholar]
  7. Davis B. C., Thorpe I. F.. 2013; Thumb inhibitor binding eliminates functionally important dynamics in the hepatitis C virus RNA polymerase. Proteins81:40–52 [CrossRef]
    [Google Scholar]
  8. Ghorai S., Chakrabarti M., Roy S., Chavali V. R., Bagchi A., Ghosh A. K.. 2010; Molecular characterization of genome segment 2 encoding RNA dependent RNA polymerase of Antheraea mylitta cytoplasmic polyhedrosis virus. Virology 404:21–31 [CrossRef][PubMed]
    [Google Scholar]
  9. Ivetac A., McCammon J. A.. 2009; Elucidating the inhibition mechanism of HIV-1 non-nucleoside reverse transcriptase inhibitors through multicopy molecular dynamics simulations. J Mol Biol388:644–658 [CrossRef][PubMed]
    [Google Scholar]
  10. Jangam S. R., Chakrabarti M., Ghosh A. K.. 2006; Molecular cloning, expression and analysis of Antheraea mylitta cypovirus genome segments 8 and 11. Int J Virol3:60–72[CrossRef]
    [Google Scholar]
  11. Jolly M. S., Sen S. K., Ahsan M. M.. 1974; Tasar Culture Bombay: Ambika Publishers;
    [Google Scholar]
  12. Jorgensen W. L., Tirado-Rives J.. 1988; The OPLS potential functions for proteins. Energy minimizations for crystals of cyclic peptides and crambin. J Am Chem Soc110:1657–1666[CrossRef]
    [Google Scholar]
  13. Kundu A., Dutta A., Biswas P., Das A. K., Ghosh A. K.. 2015; Functional insights from molecular modeling, docking and dynamics study of a cypoviral RNA-dependent RNA polymerase. J Mol Graph Mod61:160–174[CrossRef]
    [Google Scholar]
  14. Lakowicz J. R.. 2006; Principles of Fluorescence Spectroscopy, 3rd edn. New York: Springer;[CrossRef]
    [Google Scholar]
  15. Liu H., Cheng L.. 2015; Cryo-EM shows the polymerase structures and a nonspooled genome within a dsRNA virus. Science349:1347–1350 [CrossRef][PubMed]
    [Google Scholar]
  16. Liu Y., Jiang W. W., Pratt J., Rockway T., Harris K., Vasavanonda S., Tripathi R., Pithawalla R., Kati W. M.. 2006; Mechanistic study of HCV polymerase inhibitors at individual steps of the polymerization reaction. Biochemistry45:11312–11323 [CrossRef][PubMed]
    [Google Scholar]
  17. Lu X., McDonald S. M., Tortorici M. A., Tao Y. J., Vasquez-Del Carpio R., Nibert M. L., Patton J. T., Harrison S. C.. 2008; Mechanism for coordinated RNA packaging and genome replication by rotavirus polymerase VP1. Structure16:1678–1688 [CrossRef][PubMed]
    [Google Scholar]
  18. McDonald S. M., Patton J. T.. 2009; Rotavirus VP2 core shell regions critical for viral polymerase activation. J Virol85:3095–4105[CrossRef]
    [Google Scholar]
  19. McDonald S. M., Tao Y. J., Patton J. T.. 2009; The ins and outs of four-tunneled Reoviridae RNA-dependent RNA polymerases. Curr Opin Struct Biol19:775–782 [CrossRef][PubMed]
    [Google Scholar]
  20. Mertens P. P. C., Rao S., Zhou Z. H.. 2005; Cypovirus. In Virus Taxonomy, 8th Report of the ICTV pp522–533 Edited by Fauquet C. M., Mayo M. A., Maniloff J., Desselberger U., Ball L. A.. Amsterdam: Elsevier;
    [Google Scholar]
  21. Moustafa I. M., Shen H., Morton B., Colina C. M., Cameron C. E.. 2011; Molecular dynamics simulations of viral RNA polymerases link conserved and correlated motions of functional elements to fidelity. J Mol Biol410:159–181 [CrossRef][PubMed]
    [Google Scholar]
  22. Oh J. W., Ito T., Lai M. M.. 1999; A recombinant hepatitis C virus RNA-dependent RNA polymerase capable of copying the full-length viral RNA. J Virol73:7694–7702[PubMed]
    [Google Scholar]
  23. Qanungo K. R., Kundu S. C., Ghosh A. K.. 2000; Characterization of cypovirus isolates from tropical and temperate Indian saturniidae silkworms. Acta Virol44:349–357[PubMed]
    [Google Scholar]
  24. Qanungo K. R., Kundu S. C., Mullins J. I., Ghosh A. K.. 2002; Molecular cloning and characterization of Antheraea mylitta cytoplasmic polyhedrosis virus genome segment 9. J Gen Virol83:1483–1491 [CrossRef][PubMed]
    [Google Scholar]
  25. Sali A., Blundell T. L.. 1993; Comparative protein modeling by satisfaction of spatial restraints. J Mol Biol243:779–815[CrossRef]
    [Google Scholar]
  26. Sinha-Datta U., Chavali V. R., Ghosh A. K.. 2005; Molecular cloning and characterization of Antheraea mylitta cytoplasmic polyhedrosis virus polyhedrin gene and its variant forms. Biochem Biophys Res Commun332:710–718 [CrossRef][PubMed]
    [Google Scholar]
  27. Sullivan S. M., Mishra R., Neubig R. R., Maddock J. R.. 2000; Analysis of guanine nucleotide binding and exchange kinetics of the Escherichia coli GTPase Era. J Bacteriol182:3460–3466[PubMed][CrossRef]
    [Google Scholar]
  28. Tao Y., Farsetta D. L., Nibert M. L., Harrison S. C.. 2002; RNA synthesis in a cage – structural studies of reovirus polymerase lambda3. Cell111:733–745[PubMed][CrossRef]
    [Google Scholar]
  29. van der Spoel D., Lindahl E., Hess B., Groenhof G., Mark A. E., Berendsen H. J. C.. 2005; GROMACS: fast, flexible and free. J Comp Chem26:1701–1718[CrossRef]
    [Google Scholar]
  30. Wehrfritz J. M., Boyce M., Mirza S., Roy P.. 2007; Reconstitution of bluetongue virus polymerase activity from isolated domains based on a three-dimensional structural model. Biopolymers86:83–94 [CrossRef][PubMed]
    [Google Scholar]
  31. Yamashita T., Kaneko S., Shirota Y., Qin W., Nomura T., Kobayashi K., Murakami S.. 1998; RNA-dependent RNA polymerase activity of the soluble recombinant hepatitis C virus NS5B protein truncated at the C-terminal region. J Biol Chem273:15479–15486[PubMed][CrossRef]
    [Google Scholar]
  32. Zhang X., Ding K., Yu X., Chang W., Sun J., Zhou Z. H.. 2015; In situ structures of the segmented genome and RNA polymerase complex inside a dsRNA virus. Nature527:531–534 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000463
Loading
/content/journal/jgv/10.1099/jgv.0.000463
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error