1887

Abstract

PARP-1 silences retrotransposons in Drosophila, through heterochromatin maintenance, and integrated retroviruses in chicken. Here, we determined the role of viral DNA integration and cellular heterochromatin in PARP-1-mediated retroviral silencing using HIV-1-derived lentiviral vectors and Rous-associated virus type 1 (RAV-1) as models. Analysis of the infection of PARP-1 knockout and control cells with HIV-1 harbouring WT integrase, in the presence or absence of an integrase inhibitor, or catalytic-dead mutant integrase indicated that silencing does not require viral DNA integration. The mechanism involves the catalytic activity of histone deacetylases but not that of PARP-1. In contrast to Drosophila, lack of PARP-1 in avian cells did not affect chromatin compaction globally or at the RAV-1 provirus, or the cellular levels of histone H3 N-terminal acetylated or Lys27 trimethylated, as indicated by micrococcal nuclease accessibility and immunoblot assays. Therefore, PARP-1 represses retroviruses prior to viral DNA integration by mechanisms involving histone deacetylases but not heterochromatin formation.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000466
2016-07-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/7/1686.html?itemId=/content/journal/jgv/10.1099/jgv.0.000466&mimeType=html&fmt=ahah

References

  1. Ali S. S., Whitney J. C., Stevenson J., Robinson H., Howell P. L., Navarre W. W..( 2013;). Structural insights into the regulation of foreign genes in Salmonella by the Hha/H-NS complex. . J Biol Chem 288: 13356–13369. [CrossRef] [PubMed]
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J., Schaffer A. A..( 1997;). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. . Nucleic Acids Res 25: 3389–3402. [CrossRef] [PubMed]
    [Google Scholar]
  3. Amé J. C., Spenlehauer C., de Murcia G..( 2004;). The PARP superfamily. . Bioessays 26: 882–893. [CrossRef] [PubMed]
    [Google Scholar]
  4. Ariumi Y., Turelli P., Masutani M., Trono D..( 2005;). DNA damage sensors ATM, ATR, DNA-PKcs, and PARP-1 are dispensable for human immunodeficiency virus type 1 integration. . J Virol 79: 2973–2978. [CrossRef] [PubMed]
    [Google Scholar]
  5. Baba T. W., Giroir B. P., Humphries E. H..( 1985;). Cell lines derived from avian lymphomas exhibit two distinct phenotypes. . Virology (Auckl) 144: 139–151. [CrossRef] [PubMed]
    [Google Scholar]
  6. Baekelandt V., Claeys A., Cherepanov P., De Clercq E., De Strooper B., Nuttin B., Debyser Z..( 2000;). DNA-dependent protein kinase is not required for efficient lentivirus integration. . J Virol 74: 11278–11285. [CrossRef] [PubMed]
    [Google Scholar]
  7. Barr S. D., Leipzig J., Shinn P., Ecker J. R., Bushman F. D..( 2005;). Integration targeting by avian sarcoma-leukosis virus and human immunodeficiency virus in the chicken genome. . J Virol 79: 12035–12044. [CrossRef] [PubMed]
    [Google Scholar]
  8. Beitzel B., Bushman F..( 2003;). Construction and analysis of cells lacking the HMGA gene family. . Nucleic Acids Res 31: 5025–5032. [CrossRef] [PubMed]
    [Google Scholar]
  9. Boehler C., Gauthier L. R., Mortusewicz O., Biard D. S., Saliou J. M., Bresson A., Sanglier-Cianferani S., Smith S., Schreiber V., Boussin F., Dantzer F..( 2012;). Poly(ADP-ribose) polymerase 3 (PARP3), a newcomer in cellular response to DNA damage and mitotic progression. . Proc Natl Acad Sci U S A 108: 2783–2788.[CrossRef]
    [Google Scholar]
  10. Bueno M. T., Reyes D., Valdes L., Saheba A., Urias E., Mendoza C., Fregoso O. I., Llano M..( 2013;). Poly(ADP-ribose) polymerase 1 promotes transcriptional repression of integrated retroviruses. . J Virol 87: 2496–2507. [CrossRef] [PubMed]
    [Google Scholar]
  11. Bürkle A., Virág L..( 2013;). Poly(ADP-ribose): PARadigms and PARadoxes. . Mol Aspects Med 34: 1046–1065. [CrossRef] [PubMed]
    [Google Scholar]
  12. Butler S. L., Hansen M. S., Bushman F. D..( 2001;). A quantitative assay for HIV DNA integration in vivo. . Nat Med 7: 631–634. [CrossRef] [PubMed]
    [Google Scholar]
  13. Chou D. M., Adamson B., Dephoure N. E., Tan X., Nottke A. C., Hurov K. E., Gygi S. P., Colaiacovo M. P., Elledge S. J..( 2010;). A chromatin localization screen reveals poly (ADP ribose)-regulated recruitment of the repressive polycomb and NuRD complexes to sites of DNA damage. . Proc Natl Acad Sci U S A 107: 18475–18480. [CrossRef]
    [Google Scholar]
  14. Chung H. R., Dunkel I., Heise F., Linke C., Krobitsch S., Ehrenhofer-Murray A. E., Sperling S. R., Vingron M..( 2010;). The effect of micrococcal nuclease digestion on nucleosome positioning data. . PLoS One 5: e15754. [CrossRef] [PubMed]
    [Google Scholar]
  15. Cooper A., García M., Petrovas C., Yamamoto T., Koup R. A., Nabel G. J..( 2013;). HIV-1 causes CD4 cell death through DNA-dependent protein kinase during viral integration. . Nat New Biol 498: 376–379. [CrossRef] [PubMed]
    [Google Scholar]
  16. Drogaris P., Villeneuve V., Pomiès C., Lee E. H., Bourdeau V., Bonneil E., Ferbeyre G., Verreault A., Thibault P..( 2012;). Histone deacetylase inhibitors globally enhance h3/h4 tail acetylation without affecting h3 lysine 56 acetylation. . Sci Rep 2: 220. [CrossRef] [PubMed]
    [Google Scholar]
  17. Gaken J. A., Tavassoli M., Gan S. U., Vallian S., Giddings I., Darling D. C., Galea-Lauri J., Thomas M. G., Abedi H. et al.( 1996;). Efficient retroviral infection of mammalian cells is blocked by inhibition of poly(ADP-ribose) polymerase activity. . J Virol 70: 3992–4000.[PubMed]
    [Google Scholar]
  18. Garcia-Rivera J. A., Bueno M. T., Morales E., Kugelman J. R., Rodriguez D. F., Llano M..( 2010;). Implication of serine residues 271, 273, and 275 in the human immunodeficiency virus type 1 cofactor activity of lens epithelium-derived growth factor/p75. . J Virol 84: 740–752. [CrossRef] [PubMed]
    [Google Scholar]
  19. Gasiunas G., Sinkunas T., Siksnys V..( 2014;). Molecular mechanisms of CRISPR-mediated microbial immunity. . Cell Mol Life Sci 71: 449–465. [CrossRef]
    [Google Scholar]
  20. Ha H. C., Juluri K., Zhou Y., Leung S., Hermankova M., Snyder S. H..( 2001;). Poly(ADP-ribose) polymerase-1 is required for efficient HIV-1 integration. . Proc Natl Acad Sci U S A 98: 3364–3368. [CrossRef] [PubMed]
    [Google Scholar]
  21. Hochegger H., Dejsuphong D., Fukushima T., Morrison C., Sonoda E., Schreiber V., Zhao G. Y., Saberi A., Masutani M. et al.( 2006;). Parp-1 protects homologous recombination from interference by Ku and ligase IV in vertebrate cells. . EMBO J 25: 1305–1314. [CrossRef] [PubMed]
    [Google Scholar]
  22. Hoelzer K., Shackelton L. A., Parrish C. R..( 2008;). Presence and role of cytosine methylation in DNA viruses of animals. . Nucleic Acids Res 36: 2825–2837. [CrossRef] [PubMed]
    [Google Scholar]
  23. Jenuwein T., Allis C. D..( 2001;). Translating the histone code. . Science 293: 1074–1080. [CrossRef]
    [Google Scholar]
  24. Ji Y., Tulin A. V..( 2010;). The roles of PARP1 in gene control and cell differentiation. . Curr Opin Genetics Dev 20: 512–518. [CrossRef] [PubMed]
    [Google Scholar]
  25. Kameoka M., Nukuzuma S., Itaya A., Tanaka Y., Ota K., Ikuta K., Yoshihara K..( 2004;). RNA interference directed against poly(ADP-ribose) polymerase 1 efficiently suppresses human immunodeficiency virus type 1 replication in human cells. . J Virol 78: 8931–8934. [CrossRef] [PubMed]
    [Google Scholar]
  26. Kameoka M., Nukuzuma S., Itaya A., Tanaka Y., Ota K., Inada Y., Ikuta K., Yoshihara K..( 2005;). Poly(ADP-ribose)polymerase-1 is required for integration of the human immunodeficiency virus type 1 genome near centromeric alphoid DNA in human and murine cells. . Biochem Biophys Res Commun 334: 412–417. [CrossRef] [PubMed]
    [Google Scholar]
  27. Kantor B., Ma H., Webster-Cyriaque J., Monahan P. E., Kafri T..( 2009;). Epigenetic activation of unintegrated HIV-1 genomes by gut-associated short chain fatty acids and its implications for HIV infection. . Proc Natl Acad Sci U S A 106: 18786–18791. [CrossRef] [PubMed]
    [Google Scholar]
  28. Kilzer J. M., Stracker T., Beitzel B., Meek K., Weitzman M., Bushman F. D..( 2003;). Roles of host cell factors in circularization of retroviral DNA. . Virology (Auckl) 314: 460–467. [CrossRef] [PubMed]
    [Google Scholar]
  29. Kim J., Kim H..( 2012;). Recruitment and biological consequences of histone modification of H3K27me3 and H3K9me3. . ILAR J 53: 232–239. [CrossRef] [PubMed]
    [Google Scholar]
  30. Kimura H..( 2013;). Histone modifications for human epigenome analysis. . J Hum Genet 58: 439–445. [CrossRef] [PubMed]
    [Google Scholar]
  31. Ko H. L., Ng H. J., Goh E. H., Ren E. C..( 2013;). Reduced ADP-ribosylation by PARP1 natural polymorphism V762A and by PARP1 inhibitors enhance hepatitis B virus replication. . J Viral Hepat 20: 658–665. [CrossRef] [PubMed]
    [Google Scholar]
  32. Kotova E., Jarnik M., Tulin A. V..( 2010;). Uncoupling of the transactivation and transrepression functions of PARP1 protein. . Proc Natl Acad Sci U S A 107: 6406–6411. [CrossRef] [PubMed]
    [Google Scholar]
  33. Kotova E., Lodhi N., Jarnik M., Pinnola A. D., Ji Y., Tulin A. V..( 2011;). Drosophila histone H2A variant (H2Av) controls poly(ADP-ribose) polymerase 1 (PARP1) activation in chromatin. . Proc Natl Acad Sci U S A 108: 6205–6210. [CrossRef] [PubMed]
    [Google Scholar]
  34. Koyama T., Sun B., Tokunaga K., Tatsumi M., Ishizaka Y..( 2013;). DNA damage enhances integration of HIV-1 into macrophages by overcoming integrase inhibition. . Retrovirology 10: 21. [CrossRef] [PubMed]
    [Google Scholar]
  35. Krishnakumar R., Kraus W. L..( 2010;). The PARP side of the nucleus: Molecular actions, physiological outcomes, and clinical targets. . Mol Cell 39: 8–24. [CrossRef] [PubMed]
    [Google Scholar]
  36. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A., Lopez R., Thompson J. D., Gibson T. J., Higgins D. G..( 2007;). Clustal W and clustal X version 2.0. . Bioinformatics 23: 2947–2948. [CrossRef] [PubMed]
    [Google Scholar]
  37. Lilley C. E., Carson C. T., Muotri A. R., Gage F. H., Weitzman M. D..( 2005;). DNA repair proteins affect the lifecycle of herpes simplex virus 1. . Proc Natl Acad Sci U S A 102: 5844–5849. [CrossRef] [PubMed]
    [Google Scholar]
  38. Lilley C. E., Chaurushiya M. S., Boutell C., Everett R. D., Weitzman M. D..( 2011;). The intrinsic antiviral defense to incoming HSV-1 genomes includes specific DNA repair proteins and is counteracted by the viral protein ICP0. . PLoS Pathog 7: e1002084. [CrossRef] [PubMed]
    [Google Scholar]
  39. Ménissier de Murcia J., Ricoul M., Tartier L., Niedergang C., Huber A., Dantzer F., Schreiber V., Amé J. C., Dierich A. et al.( 2003;). Functional interaction between PARP-1 and PARP-2 in chromosome stability and embryonic development in mouse. . EMBO J 22: 2255–2263. [CrossRef] [PubMed]
    [Google Scholar]
  40. Mitta B., Weber C. C., Rimann M., Fussenegger M..( 2004;). Design and in vivo characterization of self-inactivating human and non-human lentiviral expression vectors engineered for streptogramin-adjustable transgene expression. . Nucleic Acids Res 32: e106. [CrossRef] [PubMed]
    [Google Scholar]
  41. Mitta B., Weber C. C., Fussenegger M..( 2005;). In vivo transduction of HIV-1-derived lentiviral particles engineered for macrolide-adjustable transgene expression. . J Gene Med 7: 1400–1408. [CrossRef] [PubMed]
    [Google Scholar]
  42. Morales V., Richard-Foy H..( 2000;). Role of histone N-terminal tails and their acetylation in nucleosome dynamics. . Mol Cell Biol 20: 7230–7237. [CrossRef] [PubMed]
    [Google Scholar]
  43. Ohsaki E., Ueda K., Sakakibara S., Do E., Yada K., Yamanishi K..( 2004;). Poly(ADP-ribose) polymerase 1 binds to Kaposi's sarcoma-associated herpesvirus (KSHV) terminal repeat sequence and modulates KSHV replication in latency. . J Virol 78: 9936–9946. [CrossRef] [PubMed]
    [Google Scholar]
  44. Orzalli M. H., Conwell S. E., Berrios C., DeCaprio J. A., Knipe D. M..( 2013;). Nuclear interferon-inducible protein 16 promotes silencing of herpesviral and transfected DNA. . Proc Natl Acad Sci U S A 110: E4492E4501. [CrossRef] [PubMed]
    [Google Scholar]
  45. Pinnola A., Naumova N., Shah M., Tulin A. V..( 2007;). Nucleosomal core histones mediate dynamic regulation of poly(ADP-ribose) polymerase 1 protein binding to chromatin and induction of its enzymatic activity. . J Biol Chem 282: 32511–32519. [CrossRef] [PubMed]
    [Google Scholar]
  46. Pinsker W., Haring E., Hagemann S., Miller W. J..( 2001;). The evolutionary life history of P transposons: from horizontal invaders to domesticated neogenes. . Chromosoma 110: 148–158.[CrossRef]
    [Google Scholar]
  47. Randow F., Sale J. E..( 2006;). Retroviral transduction of DT40. . Subcell Biochem 40: 383–386.[PubMed]
    [Google Scholar]
  48. Rass E., Grabarz A., Bertrand P., Lopez B. S..( 2012;). [Double strand break repair, one mechanism can hide another: alternative non-homologous end joining]. . Cancer radiothérapie: journal de la Société française de radiothérapie oncologique. 16: 1–10. [CrossRef] [PubMed]
    [Google Scholar]
  49. Ross P. J., Kennedy M. A., Parks R. J..( 2009;). Host cell detection of noncoding stuffer DNA contained in helper-dependent adenovirus vectors leads to epigenetic repression of transgene expression. . J Virol 83: 8409–8417. [CrossRef] [PubMed]
    [Google Scholar]
  50. Sakurai Y., Komatsu K., Agematsu K., Matsuoka M..( 2009;). DNA double strand break repair enzymes function at multiple steps in retroviral infection. . Retrovirology 6: 114. [CrossRef] [PubMed]
    [Google Scholar]
  51. Schneider W. M., Wu D. T., Amin V., Aiyer S., Roth M. J..( 2012;). Mulv IN mutants responsive to HDAC inhibitors enhance transcription from unintegrated retroviral DNA. . Virology (Auckl) 426: 188–196. [CrossRef] [PubMed]
    [Google Scholar]
  52. Schreiner S., Kinkley S., Bürck C., Mund A., Wimmer P., Schubert T., Groitl P., Will H., Dobner T..( 2013;). SPOC1-mediated antiviral host cell response is antagonized early in human adenovirus type 5 infection. . PLoS Pathog 9: e1003775. [CrossRef] [PubMed]
    [Google Scholar]
  53. Siva A. C., Bushman F..( 2002;). Poly(ADP-ribose) polymerase 1 is not strictly required for infection of murine cells by retroviruses. . J Virol 76: 11904–11910. [CrossRef] [PubMed]
    [Google Scholar]
  54. Sloan R. D., Wainberg M. A..( 2011;). The role of unintegrated DNA in HIV infection. . Retrovirology 8: 52. [CrossRef] [PubMed]
    [Google Scholar]
  55. Tulin A., Stewart D., Spradling A. C..( 2002;). The Drosophila heterochromatic gene encoding poly(ADP-ribose) polymerase (PARP) is required to modulate chromatin structure during development. . Genes & Development 16: 2108–2119. [CrossRef] [PubMed]
    [Google Scholar]
  56. Wang Z. Q., Auer B., Stingl L., Berghammer H., Haidacher D., Schweiger M., Wagner E. F..( 1995;). Mice lacking ADPRT and poly(ADP-ribosyl)ation develop normally but are susceptible to skin disease. . Genes & Development 9: 509–520. [CrossRef] [PubMed]
    [Google Scholar]
  57. Weitzman M. D., Lilley C. E., Chaurushiya M. S..( 2010;). Genomes in conflict: maintaining genome integrity during virus infection. . Annu Rev Microbiol 64: 61–81. [CrossRef] [PubMed]
    [Google Scholar]
  58. Yu S. S., Dan K., Chono H., Chatani E., Mineno J., Kato I..( 2008;). Transient gene expression mediated by integrase-defective retroviral vectors. . Biochem Biophys Res Commun 368: 942–947. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000466
Loading
/content/journal/jgv/10.1099/jgv.0.000466
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error