1887

Abstract

Seven novel lactic acid bacterial strains, isolated from traditional Chinese pickle, were characterized using a polyphasic approach, including 16S rRNA gene sequence analysis, gene sequence analysis, gene sequence analysis, determination of DNA G+C content, determination of average nucleotide identity (ANI), DNA–DNA hybridization (DDH), fatty acid methyl ester (FAME) analysis and an analysis of phenotypic features. Strains 382-1, 116-1A, 381-7, 203-3, 218-3 and 398-2 were phylogenetically related to the type strains of subsp. , subsp. , , , , , , , and , having 97.1–99.9 % 16S rRNA gene sequence similarities, less than 89.9 % gene sequence similarities, less than 98.0 % gene sequence similarities, less than 91.2 % ANI values and less than 43.3 % DDH values. Strain 778-3 was phylogenetically related to the type strains of , , , , and , exhibiting 97.0–99.4 % 16S rRNA gene sequence similarities, 78.2–82.1 %  gene sequence similarities, 80.0–91.5 %  gene sequence similarities, less than 78.6 % ANI values and less than 22.9 % DDH values. Based upon the data of polyphasic characterization obtained in the present study, seven novel species, sp. nov., sp. nov., sp. nov., sp. nov., sp. nov., sp. nov. and sp. nov., are proposed and the type strains are 382-1 (=NCIMB 15187=CCM 8935=LMG 31176), 116-1A (=NCIMB 15181=CCM 8934=LMG 31171), 381-7 (=NCIMB 15186=CCM 8930), 203-3 (=NCIMB 15183=CCM 8933=LMG 31172), 218-3 (=NCIMB 15184=CCM 8932=LMG 31173), 398-2 (=NCIMB 15189=CCM 8931=LMG 31174) and 778-3 (=NCIMB 15191=CCM 8929=LMG 31177), respectively.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003619
2019-10-01
2019-10-15
Loading full text...

Full text loading...

References

  1. Ludwig W, Schleifer KH, Whitman WB. Taxonomic outline of the phylum Firmicutes. In De Vos P, Garrity G, Jones D, Krieg NR, Ludwig W et al. (editors) Bergey’s Manual of Systematic Bacteriology New York: Springer; 2009; pp.15–17
    [Google Scholar]
  2. Skerman VBD, Sneath PHA, Mcgowan V. Approved lists of bacterial names. Int J Syst Evol Microbiol 1980;30:225–420 [CrossRef]
    [Google Scholar]
  3. Hammes WP, Hertel C. Genus Lactobacillus Beijerink, 1901. In De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W et al. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed.vol. 3 Berlin: Springer; 2009; pp.465–510
    [Google Scholar]
  4. Salvetti E, Torriani S, Felis GE. The genus Lactobacillus: a taxonomic update. Probiotics Antimicrob Proteins 2012;4:217–226 [CrossRef][PubMed]
    [Google Scholar]
  5. Gu CT, Li CY, Yang LJ, Huo GC. Lactobacillus mudanjiangensis sp. nov., Lactobacillus songhuajiangensis sp. nov. and Lactobacillus nenjiangensis sp. nov., isolated from Chinese traditional pickle and sourdough. Int J Syst Evol Microbiol 2013;63:4698–4706 [CrossRef][PubMed]
    [Google Scholar]
  6. Mao Y, Chen M, Horvath P. Lactobacillus herbarum sp. nov., a species related to Lactobacillus plantarum. Int J Syst Evol Microbiol 2015;65:4682–4688 [CrossRef][PubMed]
    [Google Scholar]
  7. Miyashita M, Yukphan P, Chaipitakchonlatarn W, Malimas T, Sugimoto M et al. Lactobacillus plajomi sp. nov. and Lactobacillus modestisalitolerans sp. nov., isolated from traditional fermented foods. Int J Syst Evol Microbiol 2015;65:2485–2490 [CrossRef][PubMed]
    [Google Scholar]
  8. Tohno M, Kitahara M, Uegaki R, Irisawa T, Ohkuma M et al. Lactobacillus hokkaidonensis sp. nov., isolated from subarctic timothy grass (Phleum pratense L.) silage. Int J Syst Evol Microbiol 2013;63:2526–2531 [CrossRef][PubMed]
    [Google Scholar]
  9. Oberg CJ, Oberg TS, Culumber MD, Ortakci F, Broadbent JR et al. Lactobacillus wasatchensis sp. nov., a non-starter lactic acid bacteria isolated from aged Cheddar cheese. Int J Syst Evol Microbiol 2016;66:158–164 [CrossRef][PubMed]
    [Google Scholar]
  10. Gu CT, Li CY, Yang LJ, Huo GC. Lactobacillus heilongjiangensis sp. nov., isolated from Chinese pickle. Int J Syst Evol Microbiol 2013;63:4094–4099 [CrossRef][PubMed]
    [Google Scholar]
  11. An D, Cai S, Dong X. Actinomyces ruminicola sp. nov., isolated from cattle rumen. Int J Syst Evol Microbiol 2006;56:2043–2048 [CrossRef][PubMed]
    [Google Scholar]
  12. Naser SM, Thompson FL, Hoste B, Gevers D, Dawyndt P et al. Application of multilocus sequence analysis (MLSA) for rapid identification of Enterococcus species based on rpoA and pheS genes. Microbiology 2005;151:2141–2150 [CrossRef][PubMed]
    [Google Scholar]
  13. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994;22:4673–4680 [CrossRef][PubMed]
    [Google Scholar]
  14. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  15. Kishino H, Hasegawa M. Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in hominoidea. J Mol Evol 1989;29:170–179 [CrossRef][PubMed]
    [Google Scholar]
  16. Rzhetsky A, Nei M. A simple method for estimating and testing minimum evolution trees. Mol Biol Evol 1992;9:945–967
    [Google Scholar]
  17. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018;35:1547–1549 [CrossRef][PubMed]
    [Google Scholar]
  18. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014;64:346–351 [CrossRef][PubMed]
    [Google Scholar]
  19. Naser SM, Dawyndt P, Hoste B, Gevers D, Vandemeulebroecke K et al. Identification of lactobacilli by pheS and rpoA gene sequence analyses. Int J Syst Evol Microbiol 2007;57:2777–2789 [CrossRef][PubMed]
    [Google Scholar]
  20. Coil D, Jospin G, Darling AE. A5-miseq: an updated pipeline to assemble microbial genomes from Illumina MiSeq data. Bioinformatics 2015;31:587–589 [CrossRef][PubMed]
    [Google Scholar]
  21. Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 2007;35:W182–W185 [CrossRef][PubMed]
    [Google Scholar]
  22. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016;66:1100–1103 [CrossRef][PubMed]
    [Google Scholar]
  23. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017;110:1281–1286 [CrossRef][PubMed]
    [Google Scholar]
  24. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007;57:81–91 [CrossRef][PubMed]
    [Google Scholar]
  25. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009;106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  26. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef][PubMed]
    [Google Scholar]
  27. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994;44:846–849 [CrossRef]
    [Google Scholar]
  28. Mattarelli P, Holzapfel W, Franz CM, Endo A, Felis GE et al. Recommended minimal standards for description of new taxa of the genera Bifidobacterium, Lactobacillus and related genera. Int J Syst Evol Microbiol 2014;64:1434–1451 [CrossRef][PubMed]
    [Google Scholar]
  29. Krieg NR, Padgett PJ. Phenotypic and physiological characterization methods. Methods Microbiol 2011;38:15–60
    [Google Scholar]
  30. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 1983;29:319–322 [CrossRef]
    [Google Scholar]
  31. Tak EJ, Kim HS, Lee JY, Kang W, Hyun DW et al. Vagococcus martis sp. nov., isolated from the small intestine of a marten, Martes flavigula. Int J Syst Evol Microbiol 2017;67:3398–3402 [CrossRef][PubMed]
    [Google Scholar]
  32. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE, USA: Microbial ID Inc; 1990
    [Google Scholar]
  33. Zanoni P, Farrow JAE, Phillips BA, Collins MD. Lactobacillus pentosus (Fred, Peterson, and Anderson) sp. nov., nom. rev. Int J Syst Bacteriol 1987;37:339–341 [CrossRef]
    [Google Scholar]
  34. Bringel F, Castioni A, Olukoya DK, Felis GE, Torriani S et al. Lactobacillus plantarum subsp. argentoratensis subsp. nov., isolated from vegetable matrices. Int J Syst Evol Microbiol 2005;55:1629–1634 [CrossRef][PubMed]
    [Google Scholar]
  35. Curk MC, Hubert JC, Bringel F. Lactobacillus paraplantarum sp. now., a new species related to Lactobacillus plantarum. Int J Syst Bacteriol 1996;46:595–598 [CrossRef][PubMed]
    [Google Scholar]
  36. de Bruyne K, Camu N, de Vuyst L, Vandamme P. Lactobacillus fabifermentans sp. nov. and Lactobacillus cacaonum sp. nov., isolated from Ghanaian cocoa fermentations. Int J Syst Evol Microbiol 2009;59:7–12 [CrossRef][PubMed]
    [Google Scholar]
  37. Gu CT, Wang F, Li CY, Liu F, Huo GC. Lactobacillus xiangfangensis sp. nov., isolated from Chinese pickle. Int J Syst Evol Microbiol 2012;62:860–863 [CrossRef][PubMed]
    [Google Scholar]
  38. Koort J, Murros A, Coenye T, Eerola S, Vandamme P et al. Lactobacillus oligofermentans sp. nov., associated with spoilage of modified-atmosphere-packaged poultry products. Appl Environ Microbiol 2005;71:4400–4406 [CrossRef][PubMed]
    [Google Scholar]
  39. Okada S, Suzuki Y, Kozaki M. A new heterofermentative Lactobacillus species with meso diaminopimelic acid in peptidoglycan, Lactobacillus vaccinostercus kozaki and okada sp. nov. J Gen Appl Microbiol 1979;25:215–221
    [Google Scholar]
  40. Kleynmans U, Heinzl H, Hammes WP. Lactobacillus suebicus sp. nov., an obligately heterofermentative Lactobacillus species isolated from fruit mashes. Syst Appl Microbiol 1989;11:267–271 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003619
Loading
/content/journal/ijsem/10.1099/ijsem.0.003619
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error