1887

Abstract

A Gram-stain-positive, rod-shaped, aerobic, non-motile, white, opaque bacterial isolate, designated 924/12, was isolated from the nose of a laboratory mouse in Düsseldorf, Germany. The 16S rRNA gene sequence analyses indicated the phylogenetic position of the strain within the genus Leucobacter . Similarity levels over 97 % were recorded between the 16S rRNA gene sequence of strain 924/12 and the type strains of the species Leucobacter chironomi DSM 19883 (99.5 %), followed by Leucobacter celer subsp. astrifaciens CBX151 (97.6 %), Leucobacter celer subsp. celer NAL101 (97.5 %), ‘ Leucobacter kyeonggiensis ’ F3-P9 (97.5 %), Leucobacter zeae CC-MF41 (97.3 %), Leucobacter chromiiresistens JG31 (97.1 %), Leucobacter triazinivorans JW-1 (97.1 %), Leucobacter corticis 2 C-7 (97.0 %) and Leucobacter aridicolis CIP108388 (97.0 %). DNA–DNA hybridization and whole genomic comparison, mandatory to taxonomically separate strain 924/12 from the type strain of L. chironomi , revealed similarity values of 40.4 and 30.8 %, respectively, thus below the threshold of 70 % recommended differentiating between species. The cell-wall amino acids of the novel isolate were diaminobutyric acid, alanine, glycine, threonine and glutamic acid. The major fatty acids were anteiso-C15 : 0, anteiso-C17 : 0 and iso-C16 : 0. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, glycolipid and one unknown lipid, whereas the predominant menaquinones were MK-11 and MK-10. The genomic DNA G+C content of strain 924/12 was 70.6 mol%. Phylogenetic analyses based on the 16S rRNA gene sequences and the phenotypical differences between strain 924/12 and the other closely related type strains of the genus Leucobacter indicated that strain 924/12 represents a novel species within the genus Leucobacter , family Microbacteriaceae , for which the name Leucobacter muris sp. nov. is proposed. The type strain is 924/12 (=DSM 101948=CCM 8761).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003446
2019-05-17
2019-09-20
Loading full text...

Full text loading...

References

  1. Takeuchi M, Weiss N, Schumann P, Yokota A. Leucobacter komagatae gen. nov., sp. nov., a new aerobic gram-positive, nonsporulating rod with 2,4-diaminobutyric acid in the cell wall. Int J Syst Bacteriol 1996;46:967–971 [CrossRef][PubMed]
    [Google Scholar]
  2. Sturm G, Jacobs J, Spröer C, Schumann P, Gescher J. Leucobacter chromiiresistens sp. nov., a chromate-resistant strain. Int J Syst Evol Microbiol 2011;61:956–960 [CrossRef][PubMed]
    [Google Scholar]
  3. Behrendt U, Ulrich A, Schumann P. Leucobacter tardus sp. nov., isolated from the phyllosphere of Solanum tuberosum L. Int J Syst Evol Microbiol 2008;58:2574–2578 [CrossRef][PubMed]
    [Google Scholar]
  4. Morais PV, Francisco R, Branco R, Chung AP, da Costa MS. Leucobacter chromiireducens sp. nov, and Leucobacter aridicollis sp. nov., two new species isolated from a chromium contaminated environment. Syst Appl Microbiol 2004;27:646–652 [CrossRef][PubMed]
    [Google Scholar]
  5. Kim HJ, Lee SS. Leucobacter kyeonggiensis sp. nov., a new species isolated from dye waste water. J Microbiol 2011;49:1044–1049 [CrossRef][PubMed]
    [Google Scholar]
  6. Schumann P, Pukall R. Leucobacter weissii sp. nov., an isolate from activated sludge once described as first representative of the peptidoglycan variation B2δ, and emended description of the genus Leucobacter. Int J Syst Evol Microbiol 2017;67:5244–5251 [CrossRef][PubMed]
    [Google Scholar]
  7. Martin E, Lodders N, Jäckel U, Schumann P, Kämpfer P. Leucobacter aerolatus sp. nov., from the air of a duck barn. Int J Syst Evol Microbiol 2010;60:2838–2842 [CrossRef][PubMed]
    [Google Scholar]
  8. Shin NR, Kim MS, Jung MJ, Roh SW, Nam YD et al. Leucobacter celer sp. nov., isolated from Korean fermented seafood. Int J Syst Evol Microbiol 2011;61:2353–2357 [CrossRef][PubMed]
    [Google Scholar]
  9. Lee JH, Lee SS. Leucobacter margaritiformis sp. nov., isolated from bamboo extract. Curr Microbiol 2012;64:441–448 [CrossRef][PubMed]
    [Google Scholar]
  10. Fang W, Li X, Tan XM, Wang LF, Piao CG et al. Leucobacter populi sp. nov. isolated from a symptomatic bark of Populus × euramericana canker. Int J Syst Evol Microbiol 2016;66:2254–2258 [CrossRef][PubMed]
    [Google Scholar]
  11. Halpern M, Shakéd T, Pukall R, Schumann P. Leucobacter chironomi sp. nov., a chromate-resistant bacterium isolated from a chironomid egg mass. Int J Syst Evol Microbiol 2009;59:665–670 [CrossRef][PubMed]
    [Google Scholar]
  12. Clark LC, Hodgkin J. Leucobacter musarum subsp. musarum sp. nov., subsp. nov., Leucobacter musarum subsp. japonicus subsp. nov., and Leucobacter celer subsp. astrifaciens subsp. nov., three nematopathogenic bacteria isolated from Caenorhabditis, with an emended description of Leucobacter celer. Int J Syst Evol Microbiol 2015;65:3977–3984 [CrossRef][PubMed]
    [Google Scholar]
  13. Somvanshi VS, Lang E, Schumann P, Pukall R, Kroppenstedt RM et al. Leucobacter iarius sp. nov., in the family Microbacteriaceae. Int J Syst Evol Microbiol 2007;57:682–686 [CrossRef][PubMed]
    [Google Scholar]
  14. Mähler Convenor M, Berard M, Feinstein R, Gallagher A, Illgen-Wilcke B et al. FELASA recommendations for the health monitoring of mouse, rat, hamster, guinea pig and rabbit colonies in breeding and experimental units. Lab Anim 2014;48:178–192 [CrossRef][PubMed]
    [Google Scholar]
  15. Benga L, Benten WP, Engelhardt E, Köhrer K, Gougoula C et al. 16S ribosomal DNA sequence-based identification of bacteria in laboratory rodents: a practical approach in laboratory animal bacteriology diagnostics. Lab Anim 2014;48:305–312 [CrossRef][PubMed]
    [Google Scholar]
  16. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  17. Kumar S, Stecher G, Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for Bigger Datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  18. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  19. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993;10:512–526 [CrossRef][PubMed]
    [Google Scholar]
  20. Stackebrandt E, Ebers J. Taxonomic parameter revisited: tarnished gold standards. Microbiology Today 2006;152–155
    [Google Scholar]
  21. Cashion P, Holder-Franklin MA, McCully J, Franklin M. A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 1977;81:461–466 [CrossRef][PubMed]
    [Google Scholar]
  22. De Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970;12:133–142 [CrossRef][PubMed]
    [Google Scholar]
  23. Huss VA, Festl H, Schleifer KH. Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 1983;4:184–192 [CrossRef][PubMed]
    [Google Scholar]
  24. Wayne LG. International committee on systematic bacteriology: announcement of the report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Zentralbl Bakteriol Mikrobiol Hyg A 1988;268:433–434[PubMed]
    [Google Scholar]
  25. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009;25:1754–1760 [CrossRef][PubMed]
    [Google Scholar]
  26. Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res 2012;22:568–576 [CrossRef][PubMed]
    [Google Scholar]
  27. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef][PubMed]
    [Google Scholar]
  28. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the Ad Hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987;37:463–464 [CrossRef]
    [Google Scholar]
  29. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 2018;9:5114 [CrossRef][PubMed]
    [Google Scholar]
  30. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989;39:159–167 [CrossRef]
    [Google Scholar]
  31. Schumann P. Peptidoglycan structure. Methods Microbiol 2011;101–129
    [Google Scholar]
  32. Groth I, Schumann P, Weiss N, Martin K, Rainey FA. Agrococcus jenensis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Bacteriol 1996;46:234–239 [CrossRef][PubMed]
    [Google Scholar]
  33. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996;42:989–1005 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003446
Loading
/content/journal/ijsem/10.1099/ijsem.0.003446
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error