1887

Abstract

Fatty-acid compositions were determined for 20 strains of marine and estuarine bacteria and two strains representative of terrestrial species. Results showed that the fatty acids of marine bacteria differed little from those of nonmarine organisms, and a primary role for hexadecenoic acid was indicated. Of the 20 strains examined, with the exception of one, the major fatty-acid species were C16, C16:1, and C 18:1. Significant differences were observed among the fatty-acid patterns of the various bacterial genera included in the set of 20 strains examined, and rapid differentiation of most of the genera could thus be accomplished. A recently isolated marine species demonstrated a unique fatty-acid pattern wherein branched acids formed the major fatty-acid class. Effects of culture age, growth temperature, and salt concentration of the medium on the fatty-acid profiles were also investigated.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-23-4-442
1973-10-01
2024-06-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/23/4/ijs-23-4-442.html?itemId=/content/journal/ijsem/10.1099/00207713-23-4-442&mimeType=html&fmt=ahah

References

  1. Ackman R. G. 1963; Structural correlation of unsaturated fatty acid esters through graphical comparison of gas-liquid chromatographic retention times on a polyester substrate. J. Amer. Oil Chem. Soc 40:558–564
    [Google Scholar]
  2. Ackman R. G. 1969; Gas-liquid chromatography of fatty acids and esters. 329–381 Lowenstein J. M. Methods in enzymology 14 Academic Press Inc.; New York:
    [Google Scholar]
  3. Albro P. W., Dittmer J. C. 1970; Bacterial hydrocarbons: occurrence, structure and metabolism. Lipids 5:320–325
    [Google Scholar]
  4. Allison M. J., Bryant M. P., Katz I., Keeney M. 1962; Metabolic function of branched-chain volatile fatty acids, growth factors for ruminococci. II. Biosynthesis of higher branched-chain fatty acids and aldehydes. J. Bacteriol 83:1084–1093
    [Google Scholar]
  5. Auran T. B., Schmidt E. L. 1972; Similarities between Hyphomicrobium and Nitrobacter with respect to fatty acids. J. Bacteriol 109:450–451
    [Google Scholar]
  6. Baumann L., Baumann P., Mandel M., Allen R. 1972; Taxonomy of aerobic marine Eubacteria . J. Bacteriol 110:402–429
    [Google Scholar]
  7. Blumer M., Chase T., Watson S. W. 1969; Fatty acids in the lipids of marine and terrestrial nitrifying bacteria. J. Bacteriol 99:366–370
    [Google Scholar]
  8. Brian B. L., Gardner E. W. 1968; Cyclopropane fatty acids of rugose Vibrio cholerae . J. Bacteriol 96:2181–2182
    [Google Scholar]
  9. Brian B. L., Gardner E. W. 1968; A simple procedure for detecting the presence of cyclopropane fatty acids in bacterial lipids. Appl. Microbiol 16:549–552
    [Google Scholar]
  10. Brockerhoff H. 1965; Stereospecific analysis of triglycerides: an analysis of human depot fat. Arch. Biochem. Biophys 110:586–592
    [Google Scholar]
  11. Brown A. D. 1961; Effects of salt concentration during growth on properties of the cell envelope of a marine pseudomonad. Biochem. Biophys. Acta 49:585–588
    [Google Scholar]
  12. Chalk K. J. I., Kodicek E. 1961; The incorporation of [Me-14C]methionine into lactobacillic acid. Biochim. Biophys. Acta 50:579–581
    [Google Scholar]
  13. Cho K. Y., Salton M. R. J. 1966; Fatty acid composition of bacterial membrane and wall lipids. Biochim. Biophys. Acta 116:73–79
    [Google Scholar]
  14. Christie W. W. 1970; Cyclopropane and cyclo-propene fatty acids. 1–49 Gunstone F. D. Topics in lipid chemistry 1 Logos Press Ltd.; London:
    [Google Scholar]
  15. Citarella R. V., Colwell R. R. 1970; Polyphasic taxonomy of the genus Vibrio : poly-nucleotide sequence relationships among selected Vibrio species. J. Bacteriol 104:434–442
    [Google Scholar]
  16. Colwell R. R. 1970; Polyphasic taxonomy of the genus Vibrio : numerical taxonomy of Vibrio cholerae Vibrio parahaemolyticus and related Vibrio species. J. Bacteriol 104:410–433
    [Google Scholar]
  17. Colwell R. R., Adeyemo V. I., Kirtland H. H. 1968; Esterases and DNA base composition analysis of Vibrio cholerae and related vibrios. J. Appl. Bacteriol 31:323–335
    [Google Scholar]
  18. Cronan J. E. 1968; Phospholipid alterations during growth of Escherichia coli . J. Bacteriol 95:2054–2061
    [Google Scholar]
  19. DeVoe I. W., Oginsky E. L. 1969; Cation interactions and biochemical composition of the cell envelope of a marine bacterium. J. Bacteriol 98:1368–1377
    [Google Scholar]
  20. Eberhard A., Rouser G. 1971; Quantitative analysis of the phospholipids of some marine bioluminescent bacteria. Lipids 6:410–414
    [Google Scholar]
  21. Goldfine H., Ellis M. E. 1964; Nmethyl groups in bacterial lipids. J. Bacteriol 87:8–15
    [Google Scholar]
  22. Gray G. M. 1967; Gas chromatography of the long-chain aldehydes. 401–427 Marinetti G. V. Lipid chromatographic analysis 1 Marcel Dekker, Inc.; New York:
    [Google Scholar]
  23. Hancock I. C., Meadow P. M. 1969; The extractable lipids of Pseudomonas aeruginosa . Biochim. Biophys. Acta 187:366–379
    [Google Scholar]
  24. Hastings J. W. 1966; The chemistry of bioluminescence. 113–153 Sanadi D. R. Current topics in bioenergetics 1 Academic Press Inc.; New York:
    [Google Scholar]
  25. Hildebrand J. G., Law J. H. 1964; Fatty acid distribution in bacterial phospholipids. The specificity of the cyclopropane synthetase reaction. Biochemistry 3:1304–1308
    [Google Scholar]
  26. Hofmann K., Tausig F. 1955; On the identity of phytomonic and lactobacillic acids. A reinvestigation of the fatty acid spectrum of Agrobacterium (Phytomonas) tumefaciens . J. Biol. Chem 213:425–432
    [Google Scholar]
  27. Hunter G. D., James A. T. 1963; Lipoaminoacids from Bacillus megaterium . Nature (London) 198:789
    [Google Scholar]
  28. Huston C. K., Albro P. W. 1964; Lipids of Sarcina lutea I. Fatty acid composition of the extractable lipids. J. Bacteriol 88:425–432
    [Google Scholar]
  29. Jamieson G. R. 1970; Structure determination of fatty esters by gas liquid chromatography. 107–155 Gunstone F. D. Topics in lipid chemistry 1 Logos Press Ltd.; London:
    [Google Scholar]
  30. Kaneshiro T., Marr A. G. 1961; Cis-9, 10-methylene hexadecanoic acid from the phospholipids of Escherichia coli . J. Biol. Chem 236:2615–2619
    [Google Scholar]
  31. Kates M. 1964; Bacterial lipids. Advan. Lipid Res 2:17–90
    [Google Scholar]
  32. Kates M., Hagen P.-O. 1964; Influence of temperature on fatty acid composition of psychrophilic and mesophilic Serratia species. Can. J. Biochem 42:481–488
    [Google Scholar]
  33. Knivett V., Cullen J. 1965; Some factors affecting cyclopropane acid formation in Escherichia coli . Biochem. J 96:771–776
    [Google Scholar]
  34. Kojima R. 1971; Fatty acid composition of bacteria and their application to bacterial classification. Jap. J. Bacteriol 26:311–318
    [Google Scholar]
  35. Kostiw L. L., Boylen C. W., Tyson B. J. 1972; Lipid composition of growing and starving cells of Arthrobacter crystallopoietes . J. Bacteriol 111:103–111
    [Google Scholar]
  36. Law J. H., Zalkin H., Kaneshiro T. 1963; Transmethylation reactions in bacterial lipids. Biochim. Biophys. Acta 70:143–151
    [Google Scholar]
  37. Lehmann K. B., Neumann R. 1896; Atlas und Grundriss der Bakteriologie und Lehrbuch der speciellen bacteriologischen Diagnostik. Teil II:1–448
    [Google Scholar]
  38. Lennarz W. J. 1970; Bacterial lipids. 155–184 Wakil S. J. Lipid metabolism Academic Press Inc.; New York:
    [Google Scholar]
  39. MacLeod R. A. 1965; The question of the existence of specific marine bacteria. Bacteriol. Rev 29:9–22
    [Google Scholar]
  40. MacLeod R. A. 1968; On the role of inorganic ions in the physiology of marine bacteria. 95–126 Droop M. R., Wood E. J. F. Advances in microbiology of the sea 1 Academic Press Inc.; New York:
    [Google Scholar]
  41. Marr A. G., Ingraham J. L. 1962; Effect of temperature on the composition of fatty acids in Escherichia coli . J. Bacteriol 84:1260–1267
    [Google Scholar]
  42. Okuyama H. 1969; Phospholipid metabolism in Escherichia coli after a shift in temperature. Biochim. Biophys. Acta 176:125–134
    [Google Scholar]
  43. O’Leary W. M. 1967 The chemistry and metabolism of microbial lipids The World Publishing Co.; Cleveland:
    [Google Scholar]
  44. Oliver J. D., Colwell R. R. 1973; Extractable lipids of gram-negative marine bacteria: phospholipid composition. J. Bacteriol 114:897–908
    [Google Scholar]
  45. Oró J., Tornabene T. G., Nooner D. W., Gelpi E. 1967; Aliphatic hydrocarbons and fatty acids of some marine and freshwater microorganisms. J. Bacteriol 93:1811–1818
    [Google Scholar]
  46. Ray P. H., White D. C., Brock T. D. 1971; Effect of temperature on the fatty acid composition of Thermus aquaticus . J. Bacteriol 106:25–30
    [Google Scholar]
  47. Romero E. M., Brenner R. R. 1966; Fatty acids synthesized from hexadecane by Pseudomonas aeruginosa. J. Bacteriol 91:183–188
    [Google Scholar]
  48. Shaw N., Stead D. 1971; Lipid composition of some species of Arthrobacter . J. Bacteriol 107:130–133
    [Google Scholar]
  49. Shaw R. 1966; The polyunsaturated fatty acids of microorganisms. Advan. Lipid Res 4:107–174
    [Google Scholar]
  50. Sinensky M. 1971; Temperature control of phospholipid biosynthesis in Escherichia coli . J. Bacteriol 106:449–455
    [Google Scholar]
  51. Tornabene T. G., Bennett E. O., Oró J. 1967; Fatty acid and aliphatic hydrocarbon composition of Sarcina lutea grown in three different media. J. Bacteriol 94:344–348
    [Google Scholar]
  52. Tornabene T. G., Gelpi E., Oró J. 1967; Identification of fatty acids and aliphatic hydrocarbons in Sarcina lutea by gas chromatography and combined gas chromatography-mass spectrometry. J. Bacteriol 94:333–343
    [Google Scholar]
  53. Veerkamp J. H. 1971; Fatty acid composition of Bifidobacterium and Lactobacillus strains. J. Bacteriol 108:861–867
    [Google Scholar]
  54. White D. C., Cox R. H. 1967; Identification and localization of the fatty acids in Haemophilus parainfluenzae . J. Bacteriol 93:1079–1088
    [Google Scholar]
  55. Yano I., Furukawa Y., Kusunose M. 1971; Fatty-acid composition of Arthrobacter simplex grown on hydrocarbons. Occurrence of α-hydroxy-fatty acids. Eur. J. Biochem 23:220–228
    [Google Scholar]
  56. ZoBell C. E., Upham H. C. 1944; A list of marine bacteria including descriptions of sixty new species. Bull. Scripps Inst. Oceanogr. Univ. Calif 5:239–292
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-23-4-442
Loading
/content/journal/ijsem/10.1099/00207713-23-4-442
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error