1887

Abstract

Order Lysobacterales (earlier known Xanthomonadales ) is a taxonomically complex group of a large number of gamma-proteobacteria classified in two different families, namely Lysobacteraceae and Rhodanobacteraceae . Current taxonomy is largely based on classical approaches and is devoid of whole-genome information-based analysis. In the present study, we have taken all classified and poorly described species belonging to the order Lysobacterales to perform a phylogenetic analysis based on the 16 S rRNA sequence. Moreover, to obtain robust phylogeny, we have generated whole-genome sequencing data of six type species namely Metallibacterium scheffleri , Panacagrimonas perspica , Thermomonas haemolytica , Fulvimonas soli , Pseudofulvimonas gallinarii and Rhodanobacter lindaniclasticus of the families Lysobacteraceae and Rhodanobacteraceae . Interestingly, whole-genome-based phylogenetic analysis revealed unusual positioning of the type species Pseudofulvimonas , Panacagrimonas , Metallibacterium and Aquimonas at family level. Whole-genome-based phylogeny involving 92 type strains resolved the taxonomic positioning by reshuffling the genus across families Lysobacteraceae and Rhodanobacteraceae . The present study reveals the need and scope for genome-based phylogenetic and comparative studies in order to address relationships of genera and species of order Lysobacterales .

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Loading

Article metrics loading...

/content/journal/acmi/10.1099/acmi.0.000015
2019-04-17
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/acmi/1/2/acmi000015.html?itemId=/content/journal/acmi/10.1099/acmi.0.000015&mimeType=html&fmt=ahah

References

  1. Saddler GS, Bradbury JF. Xanthomonadales ord. nov. In: Brenner DJ, Krieg NR, Staley JT, Boone DR, Garrity GM. (editors) Bergey’s Manual® of Systematic Bacteriology Vol. Two The Proteobacteria Part B The Gammaproteobacteria Boston, MA: Springer US; 200563–122
    [Google Scholar]
  2. Christensen P, Cook FD. Lysobacter, a new genus of nonfruiting, gliding bacteria with a high base ratio. Int J Syst Evol Microbiol 1978; 28:367–393 [View Article]
    [Google Scholar]
  3. Naushad S, Adeolu M, Wong S, Sohail M, Schellhorn HE et al. A phylogenomic and molecular marker based taxonomic framework for the order Xanthomonadales: proposal to transfer the families Algiphilaceae and Solimonadaceae to the order Nevskiales ord. nov. and to create a new family within the order Xanthomonadales, the family Rhodanobacteraceae fam. nov., containing the genus Rhodanobacter and its closest relatives. Antonie van Leeuwenhoek 2015; 107:467–485 [View Article]
    [Google Scholar]
  4. Cutiño-Jiménez AM, Martins-Pinheiro M, Lima WC, Martín-Tornet A, Morales OG et al. Evolutionary placement of Xanthomonadales based on conserved protein signature sequences. Mol Phylogenet Evol 2010; 54:524–534 [View Article]
    [Google Scholar]
  5. Williams KP, Gillespie JJ, Sobral BW, Nordberg EK, Snyder EE et al. Phylogeny of Gammaproteobacteria. J Bacteriol 2010; 192:2305–2314 [View Article]
    [Google Scholar]
  6. Naushad HS, Gupta RS. Phylogenomics and molecular signatures for species from the plant pathogen-containing order Xanthomonadales. PLoS One 2013; 8:e55216 [View Article]
    [Google Scholar]
  7. Nalin R, Simonet P, Vogel TM, Normand P. Rhodanobacter lindaniclasticus gen. nov., sp. nov., a lindane-degrading bacterium. Int J Syst Bacteriol 1999; 49:19–23 [View Article]
    [Google Scholar]
  8. Saddler GS, Bradbury JF. Xanthomonadales ord. nov. Bergey's Manual of Systematics of Archaea and Bacteria John Wiley & Sons, Ltd; 2015
    [Google Scholar]
  9. Meerbergen K, Van Geel M, Waud M, Willems KA, Dewil R et al. Assessing the composition of microbial communities in textile wastewater treatment plants in comparison with municipal wastewater treatment plants. MicrobiologyOpen 2017; 6:e00413 [View Article]
    [Google Scholar]
  10. Iasur-Kruh L, Zahavi T, Barkai R, Freilich S, Zchori-Fein E et al. Dyella-like bacterium isolated from an insect as a potential biocontrol agent against grapevine yellows. Phytopathology 2017
    [Google Scholar]
  11. Liu Y, Yao S, Liu Y, Xu Y, Cheng C. Genome sequence of Luteimonas huabeiensis HB-2, a novel species of Luteimonas with high oil displacement efficiency. Genome Announc 2014; 2:e00152–14 [View Article]
    [Google Scholar]
  12. Ziegler S, Waidner B, Itoh T, Schumann P, Spring S et al. Metallibacterium scheffleri gen. nov., sp. nov., an alkalinizing gammaproteobacterium isolated from an acidic biofilm. Int J Syst Evol Microbiol 2013; 63:1499–1504 [View Article]
    [Google Scholar]
  13. Im WT, Liu QM, Yang JE, Kim MS, Kim SY et al. Panacagrimonas perspica gen. nov., sp. nov., a novel member of Gammaproteobacteria isolated from soil of a ginseng field. J Microbiol 2010; 48:262–266 [View Article]
    [Google Scholar]
  14. Finkmann W, Altendorf K, Stackebrandt E, Lipski A. Characterization of N2O-producing Xanthomonas-like isolates from biofilters as Stenotrophomonas nitritireducens sp. nov., Luteimonas mephitis gen. nov., sp. nov. and Pseudoxanthomonas broegbernensis gen. nov., sp. nov. Int J Syst Evol Microbiol 2000; 50:273–282 [View Article]
    [Google Scholar]
  15. Busse HJ, Kämpfer P, Moore ERB, Nuutinen J, Tsitko IV et al. Thermomonas haemolytica gen. nov., sp. nov., a gamma-proteobacterium from kaolin slurry. Int J Syst Evol Microbiol 2002; 52:473–483 [View Article]
    [Google Scholar]
  16. Mergaert J, Cnockaert MC, Swings J. Fulvimonas soli gen. nov., sp. nov., a gamma-proteobacterium isolated from soil after enrichment on acetylated starch plastic. Int J Syst Evol Microbiol 2002; 52:1285–1289 [View Article]
    [Google Scholar]
  17. Kämpfer P, Martin E, Lodders N, Langer S, Schumann P et al. Pseudofulvimonas gallinarii gen. nov., sp. nov., a new member of the family Xanthomonadaceae. Int J Syst Evol Microbiol 2010; 60:1427–1431 [View Article]
    [Google Scholar]
  18. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article]
    [Google Scholar]
  19. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article]
    [Google Scholar]
  20. Tóth EM, Borsodi AK, Euzéby JP, Tindall BJ, Márialigeti K. Proposal to replace the illegitimate genus name Schineria Toth et al. 2001 with the genus name Ignatzschineria gen. nov. and to replace the illegitimate combination Schineria larvae Toth et al. 2001 with Ignatzschineria larvae comb. nov. Int J Syst Evol Microbiol 2007; 57:179–180 [View Article]
    [Google Scholar]
  21. Tóth EM, Schumann P, Borsodi AK, Kéki Z, Kovács AL et al. Wohlfahrtiimonas chitiniclastica gen. nov., sp. nov., a new gammaproteobacterium isolated from Wohlfahrtia magnifica (Diptera: Sarcophagidae). Int J Syst Evol Microbiol 2008; 58:976–981 [View Article]
    [Google Scholar]
  22. Yu TT, Zhou EM, Yin YR, Yao JC, Ming H et al. Vulcaniibacterium tengchongense gen. nov., sp. nov. isolated from a geothermally heated soil sample, and reclassification of Lysobacter thermophilus Wei et al. 2012 as Vulcaniibacterium thermophilum comb. nov. Antonie Van Leeuwenhoek 2013; 104:369–376 [View Article]
    [Google Scholar]
  23. Thompson JD, Gibson T, Higgins DG. Multiple sequence alignment using ClustalW and ClustalX. Current protocols in bioinformatics 20022.3.1–2.3.22
    [Google Scholar]
  24. Schroeter J. Ueber einige durch Bacterien gebildete Pigmente. Beiträge Zur Biologie Der Pflanzen Vol. 1 1872109–126
    [Google Scholar]
  25. Kumar S, Stecher G, Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article]
    [Google Scholar]
  26. Segata N, Börnigen D, Morgan XC, Huttenhower C. PhyloPhlAn is a new method for improved phylogenetic and taxonomic placement of microbes. Nat Commun 2013; 4:2304 [View Article]
    [Google Scholar]
  27. Edgar RC. Search and clustering orders of magnitude faster than blast. Bioinformatics 2010; 26:2460–2461 [View Article]
    [Google Scholar]
  28. Edgar RC. Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article]
    [Google Scholar]
  29. Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 2009; 26:1641–1650 [View Article]
    [Google Scholar]
  30. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 2017; 110:1281–1286 [View Article]
    [Google Scholar]
  31. Qin QL, Xie BB, Zhang XY, Chen XL, Zhou BC et al. A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol 2014; 196:2210–2215 [View Article]
    [Google Scholar]
  32. Brooke JS. New strategies against Stenotrophomonas maltophilia: a serious worldwide intrinsically drug-resistant opportunistic pathogen. Taylor & Francis; 2014
  33. Wei DQ, Yu TT, Yao JC, Zhou EM, Song ZQ et al. Lysobacter thermophilus sp. nov., isolated from a geothermal soil sample in Tengchong, south-west China. Antonie Van Leeuwenhoek 2012; 102:643–651 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/acmi/10.1099/acmi.0.000015
Loading
/content/journal/acmi/10.1099/acmi.0.000015
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error