- Volume 168, Issue 12, 2022
Volume 168, Issue 12, 2022
- Editorials
-
- Reviews
-
-
-
Bacterial survivors: evaluating the mechanisms of antibiotic persistence
More LessBacteria withstand antibiotic onslaughts by employing a variety of strategies, one of which is persistence. Persistence occurs in a bacterial population where a subpopulation of cells (persisters) survives antibiotic treatment and can regrow in a drug-free environment. Persisters may cause the recalcitrance of infectious diseases and can be a stepping stone to antibiotic resistance, so understanding persistence mechanisms is critical for therapeutic applications. However, current understanding of persistence is pervaded by paradoxes that stymie research progress, and many aspects of this cellular state remain elusive. In this review, we summarize the putative persister mechanisms, including toxin–antitoxin modules, quorum sensing, indole signalling and epigenetics, as well as the reasons behind the inconsistent body of evidence. We highlight present limitations in the field and underscore a clinical context that is frequently neglected, in the hope of supporting future researchers in examining clinically important persister mechanisms.
-
-
-
-
How Microbology was produced
More LessThis is the final paper in a series of three historical reviews marking the 75th anniversary of the launch of the Journal of General Microbiology (JGM), now Microbiology. It looks at some of the factors involved in the physical, and the electronic, production of the Journal, and how those factors have evolved since the Journal was launched in 1947. There have, of course, been massive changes in all aspects of production over the past 75 years. Microbiology started with manual typewriters, literal (rather than electronic) cutting and pasting of text at the editing stage, retyping and rechecking, hot-metal setting and printing, and finally postal distribution of complete bound issues. Illustrations, figures and tables presented special challenges. And there was also the considerable chore of having to duplicate and mail out multiple paper copies at the refereeing stage. It was all perfectly manageable, but it took a great deal of time and effort, and became all the more demanding as the Journal grew in scale and geographical reach. The dramatic rate of technical change since then is obvious to all. The technology has allowed each aspect of journal publishing to be done in new and far more convenient ways; and in some important respects it has also changed how we think about the very idea of journal publishing. Through all this, publishing has remained central to what the Microbiology Society is and does.
-
- Microbe Profiles
-
-
-
Streptococcus pneumoniae: ‘captain of the men of death’ and financial burden
More LessStreptococcus pneumoniae may inhabit the upper respiratory tract of humans without causing harm but it also causes diseases with high morbidity and mortality. It has excellent adaptive capabilities thanks to its ability to shuffle its genetic content by acquiring and incorporating DNA from other bacteria and is highly competent for genetic transformation. Sugar sensing, cleavage and transport ensure its fitness and survival in the host, and intracellular survival in macrophages has been linked to virulence. The polysaccharide capsule and toxin pneumolysin are the most important virulence determinants. Polysaccharide-based vaccines provide protection against the serotypes represented in vaccine formulations.
-
-
- Antimicrobials and AMR
-
-
-
Human serum induces daptomycin tolerance in Enterococcus faecalis and viridans group streptococci
More LessDaptomycin is a membrane-targeting lipopeptide antibiotic used in the treatment of infective endocarditis caused by multidrug-resistant Gram-positive bacteria such as Staphylococcus aureus , enterococci and viridans group streptococci. Despite demonstrating excellent in vitro activity and a low prevalence of resistant isolates, treatment failure is a significant concern, particularly for enterococcal infection. We have shown recently that human serum triggers daptomycin tolerance in S. aureus , but it was not clear if a similar phenotype occurred in other major infective endocarditis pathogens. We found that Enterococcus faecalis , Streptococcus gordonii or Streptococcus mutans grown under standard laboratory conditions were efficiently killed by daptomycin, whereas bacteria pre-incubated in human serum survived exposure to the antibiotic, with >99 % cells remaining viable. Incubation of enterococci or streptococci in serum led to peptidoglycan accumulation, as shown by increased incorporation of the fluorescent d-amino acid analogue HADA. Inhibition of peptidoglycan accumulation using the antibiotic fosfomycin resulted in a >tenfold reduction in serum-induced daptomycin tolerance, demonstrating the important contribution of the cell wall to the phenotype. We also identified a small contribution to daptomycin tolerance in E. faecalis from cardiolipin synthases, although this may reflect the inherent increased susceptibility of cardiolipin-deficient mutants. In summary, serum-induced daptomycin tolerance is a consistent phenomenon between Gram-positive infective endocarditis pathogens, but it may be mitigated using currently available antibiotic combination therapy.
-
-
-
-
An efficient CRISPR interference-based prediction method for synergistic/additive effects of novel combinations of anti-tuberculosis drugs
Tuberculosis (TB) is treated by chemotherapy with multiple anti-TB drugs for a long period, spanning 6 months even in a standard course. In perspective, to prevent the emergence of antimicrobial resistance, novel drugs that act synergistically or additively in combination with major anti-TB drugs and, if possible, shorten the duration of TB therapy are needed. However, their combinatorial effect cannot be predicted until the lead identification phase of the drug development. Clustered regularly interspaced short palindromic repeats interference (CRISPRi) is a powerful genetic tool that enables high-throughput screening of novel drug targets. The development of anti-TB drugs promises to be accelerated by CRISPRi. This study determined whether CRISPRi could be applicable for predictive screening of the combinatorial effect between major anti-TB drugs and an inhibitor of a novel target. In the checkerboard assay, isoniazid killed Mycobacterium smegmatis synergistically or additively in combinations with rifampicin or ethambutol, respectively. The susceptibility to rifampicin and ethambutol was increased by knockdown of inhA, which encodes a target molecule of isoniazid. Additionally, knockdown of rpoB, which encodes a target molecule of rifampicin, increased the susceptibility to isoniazid and ethambutol, which act synergistically with rifampicin in the checkerboard assay. Moreover, CRISPRi could successfully predict the synergistic action of cyclomarin A, a novel TB drug candidate, with isoniazid or rifampicin. These results demonstrate that CRISPRi is a useful tool not only for drug target exploration but also for screening the combinatorial effects of novel combinations of anti-TB drugs. This study provides a rationale for anti-TB drug development using CRISPRi.
-
-
-
Small multidrug resistance protein EmrE phenotypically associates with OmpW, DcrB and YggM for osmotic stress protection by betaine in Escherichia coli
More LessThe small multidrug resistance (SMR) protein EmrE resides in the inner membrane and provides resistance against a wide range of antiseptic quaternary cationic compounds (QCCs) for the Gram-negative bacterium Escherichia coli . We have reported previously that overexpression of the emrE gene results in the reduction of pH and osmotic tolerance, likely through EmrE-mediated biological QCC-based osmoprotectant efflux, indicating a potential physiological role for EmrE beyond providing drug resistance. EmrE is the most studied member of SMR transporter family; however, it is not known how the substrates translocated by EmrE move across the periplasm and through the outer membrane (OM). We have shown that the OM protein OmpW participates in the EmrE-mediated substrate efflux process and provided a hypothesis for the present study that additional OM and periplasmic proteins participate in the translocation process. To test the hypothesis, we conducted alkaline pH-based growth phenotype screens under emrE overexpression conditions. This screen identified 10 additional genes that appear to contribute to the EmrE-coupled osmoprotectant efflux: gspD, hofQ, yccZ, acrA, emrA, emrB, proX, osmF, dcrB and yggM. Further screening of these genes using a hyperosmotic growth phenotype assay in the presence and the absence of the osmoprotectant glycine betaine identified ompW and two periplasmic protein genes, dcrB and yggM, are mechanistically linked to EmrE.
-
- Cell and Developmental Microbiology
-
-
-
Fusion of a bacterial cadherin-like domain and green fluorescent protein as a specific probe to study biofilm matrix formation in Rhizobium spp
Rhizobium adhering proteins or ‘Raps’ are secreted proteins identified in a very restricted group of rhizobial strains, specifically those belonging to R. leguminosarum and R. etli . The distinctive feature of members of the Rap family is the presence of one or two cadherin-like domains or CHDLs that are also present in numerous extracellular bacterial and archaeal proteins and were proposed to confer carbohydrate binding ability. We have previously made an in-depth characterization of RapA2, a calcium-binding lectin, composed by two CHDLs, involved in biofilm matrix remodelling in R. leguminosarum bv. viciae 3841. In this study, CHDLs derived from RapA2 were analysed in detail, finding significant structural and functional differences despite their considerable sequence similarity. Only the carboxy-terminal CHDL retained properties similar to those displayed by RapA2. Our findings were used to obtain a novel fluorescent probe to study biofilm matrix development by confocal laser scanning microscopy, and also to shed some light on the role of the ubiquitous CHDL domains in bacterial secreted proteins.
-
-
- Microbial Interactions and Communities
-
-
-
Frequency of quorum-sensing mutations in Pseudomonas aeruginosa strains isolated from different environments
More LessPseudomonas aeruginosa uses quorum sensing (QS) to coordinate the expression of multiple genes necessary for establishing and maintaining infection. It has previously been shown that lasR QS mutations frequently arise in cystic fibrosis (CF) lung infections, however, there has been far less emphasis on determining whether other QS system mutations arise during infection or in other environments. To test this, we utilized 852 publicly available sequenced P. aeruginosa genomes from the Pseudomonas International Consortium Database (IPCD) to study P. aeruginosa QS mutational signatures. To study isolates by source, we focused on a subset of 654 isolates collected from CF, wounds, and non-infection environmental isolates, where we could clearly identify their source. We also worked with a small collection of isolates in vitro to determine the impact of lasR and pqs mutations on isolate phenotypes. We found that lasR mutations are common across all environments and are not specific to infection nor a particular infection type. We also found that the pqs system proteins PqsA, PqsH, PqsL and MexT, a protein of increasing importance to the QS field, are highly variable. Conversely, RsaL, a negative transcriptional regulator of the las system, was found to be highly conserved, suggesting selective pressure to repress las system activity. Overall, our findings suggest that QS mutations in P. aeruginosa are common and not limited to the las system; however, LasR is unique in the frequency of putative loss-of-function mutations.
-
-
-
-
Rapid divergence in independent aspects of the compatibility phenotype in a Spiroplasma–Drosophila interaction
More LessHeritable symbionts represent important components of the biology, ecology and evolution of their arthropod hosts. Particular microbial taxa have become common across arthropods as a consequence of their ability to establish in new host species. For a host shift to occur, the symbiont must be exposed to a novel host and then be compatible: it must not cause excess pathology, must have good vertical transmission and must possess a drive phenotype that enables spread. Here we investigate the lability of compatibility to symbiosis with Spiroplasma . We used transinfection to establish the protective Spiroplasma symbiont from Drosophila hydei in two closely related novel hosts, Drosophila simulans and Drosophila melanogaster. The Spiroplasma had contrasting compatibility in the two species, exhibiting pathology and low vertical transmission but delivering protection from wasp attack in D. melanogaster but being asymptomatic and transmitted with high efficiency but with lower protection in D. simulans. Further work indicated that pathological interactions occurred in two other members of the melanogaster species group, such that D. simulans was unusual in being able to carry the symbiont without damage. The differing compatibility of the symbiont with these closely related host species emphasizes the rapidity with which host–symbiont compatibility evolves, despite compatibility itself not being subject to direct selection. Further, the requirement to fit three independent components of compatibility (pathology, transmission, protection) is probably to be a major feature limiting the rate of host shifts that will likely impact on the utility of Spiroplasma in pest and vector control. Moving forward, the variation between sibling species pairs provides an opportunity to identify the mechanisms behind variable compatibility, which will drive hypotheses as to the evolutionary drivers of compatibility variation.
-
- Microbial Evolution
-
-
-
A comprehensive list of bacterial pathogens infecting humans
More LessThere exists an enormous diversity of bacteria capable of human infection, but no up-to-date, publicly accessible list is available. Combining a pragmatic definition of pathogenicity with an extensive search strategy, we report 1513 bacterial pathogens known to infect humans described pre-2021. Of these, 73 % were regarded as established (have infected at least three persons in three or more references) and 27 % as putative (fewer than three known cases). Pathogen species belong to 10 phyla and 24 classes scattered throughout the bacterial phylogeny. We show that new human pathogens are discovered at a rapid rate. Finally, we discuss how our results could be expanded to a database, which could provide a useful resource for microbiologists. Our list is freely available and archived on GitHub and Zenodo and we have provided walkthroughs to facilitate access and use.
-
-
- Microbial Physiology, Biochemistry and Metabolism
-
-
-
Peptide transport in Bacillus subtilis – structure and specificity in the extracellular solute binding proteins OppA and DppE
Peptide transporters play important nutritional and cell signalling roles in Bacillus subtilis, which are pronounced during stationary phase adaptations and development. Three high-affinity ATP-binding cassette (ABC) family transporters are involved in peptide uptake – the oligopeptide permease (Opp), another peptide permease (App) and a less well-characterized dipeptide permease (Dpp). Here we report crystal structures of the extracellular substrate binding proteins, OppA and DppE, which serve the Opp and Dpp systems, respectively. The structure of OppA was determined in complex with endogenous peptides, modelled as Ser-Asn-Ser-Ser, and with the sporulation-promoting peptide Ser-Arg-Asn-Val-Thr, which bind with K d values of 0.4 and 2 µM, respectively, as measured by isothermal titration calorimetry. Differential scanning fluorescence experiments with a wider panel of ligands showed that OppA has highest affinity for tetra- and penta-peptides. The structure of DppE revealed the unexpected presence of a murein tripeptide (MTP) ligand, l-Ala-d-Glu-meso-DAP, in the peptide binding groove. The mode of MTP binding in DppE is different to that observed in the murein peptide binding protein, MppA, from Escherichia coli , suggesting independent evolution of these proteins from an OppA-like precursor. The presence of MTP in DppE points to a role for Dpp in the uptake and recycling of cell wall peptides, a conclusion that is supported by analysis of the genomic context of dpp, which revealed adjacent genes encoding enzymes involved in muropeptide catabolism in a gene organization that is widely conserved in Firmicutes .
-
-
-
-
Cholesterol-dependent activity of dapsone against non-replicating persistent mycobacteria
More LessOne-third of the world’s population is estimated to be latently infected with Mycobacterium tuberculosis . This reservoir of bacteria is largely resistant to antimicrobial treatment that often only targets actively replicating mycobacteria, with current treatment for latent infection revolving around inhibiting the resuscitation event rather than preventing or treating latent infection. As a result, antimicrobials that target latent infection often have little to no activity in vivo. Here we report a method of in vitro analysis of physiologically relevant non-replicating persistence (NRP) utilizing cholesterol as the sole carbon source, alongside hypoxia as a driver of Mycobacterium bovis BCG into the NRP state. Using the minimal cholesterol media NRP assay, we observed an increased state of in vitro resistance to front-line anti-tubercular compounds. However, following a phenotypic screen of an approved-drug library, we identified dapsone as a bactericidal active molecule against cholesterol-dependent NRP M. bovis BCG. Through an overexpression trial of probable antimicrobial target enzymes, we further identified FolP2, a non-functional dihydropteroate synthase homologue, as the likely target of dapsone under cholesterol-NRP due to a significant increase in bacterial resistance when overexpressed. These results highlight the possible reason for little in vivo activity seen for current front-line anti-NRP drugs, and we introduce a new methodology for future drug screening as well as a potential role for dapsone inclusion within the current treatment regime.
-
- Regulation, Sensing and Signalling
-
-
-
Structure prediction-based insights into the patatin family of Mycobacterium tuberculosis
More LessDespite its genome sequencing more than two decades ago, the majority of the genes of Mycobacterium tuberculosis remain functionally uncharacterized. Patatins are one such class of proteins that, despite undergoing an expansion in this pathogenic species compared to their non-pathogenic cousins, remain largely unstudied. Recent advances in protein structure prediction using machine learning tools such as AlphaFold2 have provided high-confidence predicted structures for all M. tuberculosis proteins. Here we present detailed analyses of the patatin family of M. tuberculosis using AlphaFold-predicted structures, providing insights into likely modes of regulation, membrane interaction and substrate binding. Regulatory domains within this family of proteins include cyclic nucleotide binding, lid-like domains and other helical domains. Using structural homologues, we identified the likely membrane localization mechanisms and substrate-binding sites. These analyses reveal diversity in their regulatory capacity, mechanisms of membrane binding and likely length of fatty acid substrates. Together, this analysis suggests unique roles for the eight predicted patatins of M. tuberculosis .
-
-
Volumes and issues
-
Volume 170 (2024)
-
Volume 169 (2023)
-
Volume 168 (2022)
-
Volume 167 (2021)
-
Volume 166 (2020)
-
Volume 165 (2019)
-
Volume 164 (2018)
-
Volume 163 (2017)
-
Volume 162 (2016)
-
Volume 161 (2015)
-
Volume 160 (2014)
-
Volume 159 (2013)
-
Volume 158 (2012)
-
Volume 157 (2011)
-
Volume 156 (2010)
-
Volume 155 (2009)
-
Volume 154 (2008)
-
Volume 153 (2007)
-
Volume 152 (2006)
-
Volume 151 (2005)
-
Volume 150 (2004)
-
Volume 149 (2003)
-
Volume 148 (2002)
-
Volume 147 (2001)
-
Volume 146 (2000)
-
Volume 145 (1999)
-
Volume 144 (1998)
-
Volume 143 (1997)
-
Volume 142 (1996)
-
Volume 141 (1995)
-
Volume 140 (1994)
-
Volume 139 (1993)
-
Volume 138 (1992)
-
Volume 137 (1991)
-
Volume 136 (1990)
-
Volume 135 (1989)
-
Volume 134 (1988)
-
Volume 133 (1987)
-
Volume 132 (1986)
-
Volume 131 (1985)
-
Volume 130 (1984)
-
Volume 129 (1983)
-
Volume 128 (1982)
-
Volume 127 (1981)
-
Volume 126 (1981)
-
Volume 125 (1981)
-
Volume 124 (1981)
-
Volume 123 (1981)
-
Volume 122 (1981)
-
Volume 121 (1980)
-
Volume 120 (1980)
-
Volume 119 (1980)
-
Volume 118 (1980)
-
Volume 117 (1980)
-
Volume 116 (1980)
-
Volume 115 (1979)
-
Volume 114 (1979)
-
Volume 113 (1979)
-
Volume 112 (1979)
-
Volume 111 (1979)
-
Volume 110 (1979)
-
Volume 109 (1978)
-
Volume 108 (1978)
-
Volume 107 (1978)
-
Volume 106 (1978)
-
Volume 105 (1978)
-
Volume 104 (1978)
-
Volume 103 (1977)
-
Volume 102 (1977)
-
Volume 101 (1977)
-
Volume 100 (1977)
-
Volume 99 (1977)
-
Volume 98 (1977)
-
Volume 97 (1976)
-
Volume 96 (1976)
-
Volume 95 (1976)
-
Volume 94 (1976)
-
Volume 93 (1976)
-
Volume 92 (1976)
-
Volume 91 (1975)
-
Volume 90 (1975)
-
Volume 89 (1975)
-
Volume 88 (1975)
-
Volume 87 (1975)
-
Volume 86 (1975)
-
Volume 85 (1974)
-
Volume 84 (1974)
-
Volume 83 (1974)
-
Volume 82 (1974)
-
Volume 81 (1974)
-
Volume 80 (1974)
-
Volume 79 (1973)
-
Volume 78 (1973)
-
Volume 77 (1973)
-
Volume 76 (1973)
-
Volume 75 (1973)
-
Volume 74 (1973)
-
Volume 73 (1972)
-
Volume 72 (1972)
-
Volume 71 (1972)
-
Volume 70 (1972)
-
Volume 69 (1971)
-
Volume 68 (1971)
-
Volume 67 (1971)
-
Volume 66 (1971)
-
Volume 65 (1971)
-
Volume 64 (1970)
-
Volume 63 (1970)
-
Volume 62 (1970)
-
Volume 61 (1970)
-
Volume 60 (1970)
-
Volume 59 (1969)
-
Volume 58 (1969)
-
Volume 57 (1969)
-
Volume 56 (1969)
-
Volume 55 (1969)
-
Volume 54 (1968)
-
Volume 53 (1968)
-
Volume 52 (1968)
-
Volume 51 (1968)
-
Volume 50 (1968)
-
Volume 49 (1967)
-
Volume 48 (1967)
-
Volume 47 (1967)
-
Volume 46 (1967)
-
Volume 45 (1966)
-
Volume 44 (1966)
-
Volume 43 (1966)
-
Volume 42 (1966)
-
Volume 41 (1965)
-
Volume 40 (1965)
-
Volume 39 (1965)
-
Volume 38 (1965)
-
Volume 37 (1964)
-
Volume 36 (1964)
-
Volume 35 (1964)
-
Volume 34 (1964)
-
Volume 33 (1963)
-
Volume 32 (1963)
-
Volume 31 (1963)
-
Volume 30 (1963)
-
Volume 29 (1962)
-
Volume 28 (1962)
-
Volume 27 (1962)
-
Volume 26 (1961)
-
Volume 25 (1961)
-
Volume 24 (1961)
-
Volume 23 (1960)
-
Volume 22 (1960)
-
Volume 21 (1959)
-
Volume 20 (1959)
-
Volume 19 (1958)
-
Volume 18 (1958)
-
Volume 17 (1957)
-
Volume 16 (1957)
-
Volume 15 (1956)
-
Volume 14 (1956)
-
Volume 13 (1955)
-
Volume 12 (1955)
-
Volume 11 (1954)
-
Volume 10 (1954)
-
Volume 9 (1953)
-
Volume 8 (1953)
-
Volume 7 (1952)
-
Volume 6 (1952)
-
Volume 5 (1951)
-
Volume 4 (1950)
-
Volume 3 (1949)
-
Volume 2 (1948)
-
Volume 1 (1947)