- Volume 158, Issue 4, 2012
Volume 158, Issue 4, 2012
- Microbial Pathogenicity
-
-
-
Primary mechanisms mediating aminoglycoside resistance in the multidrug-resistant Pseudomonas aeruginosa clinical isolate PA7
More LessThe multiresistant taxonomic outlier Pseudomonas aeruginosa PA7 possesses the conserved efflux genes, mexXY; however these are linked to a unique gene encoding an outer membrane channel, dubbed oprA, that is absent in most P. aeruginosa strains. Using genetic knockouts and single copy chromosomal complementation, we showed that aminoglycoside resistance in PA7 is mediated in part by the MexXY-OprA pump, and intriguingly that MexXY in this strain can utilize either the OprA or OprM outer membrane channel, linked to the mexAB efflux genes. We also identified a small portion of the oprA gene immediately downstream of the mexY gene in PAO1, suggesting that non-PA7 P. aeruginosa strains might have possessed, but lost, the intact mexXY-oprA efflux pump locus. Consistent with this, most of a panel of serotype strains possessed the truncated oprA but the serotype O12 isolate had an intact mexXY-oprA locus, similar to PA7 and the related strain DSM 1128. We also showed that the mexZ repressor gene upstream of mexXY-oprA in PA7 is mutated, leading to overexpression of mexXY-oprA, using sequencing, homologous replacement and real-time quantitative reverse transcriptase PCR. Finally we assessed the contribution of MexXY and aminoglycoside modifying enzymes AAC together to resistance in PA7 and the AAC(6′)-Iae-mediated amikacin-resistant clinical isolate IMCJ2.S1, concluding that the effect of the modifying enzymes is enhanced by functional efflux, especially in the presence of divalent cations, to develop high-level aminoglycoside resistance in P. aeruginosa.
-
-
-
-
Adherence and associated virulence gene expression in acid-treated Escherichia coli O157 : H7 in vitro and in ligated pig intestine
More LessEscherichia coli O157 : H7 cells that interact with intestinal epithelial cells in animals and humans do so after passage through the low pH of the stomach. This study compared adherence and its associated virulence gene expression in acid-treated (AT) and non-acid treated (NAT) E. coli O157 : H7 strain 86-24 in vitro and in ligated pig intestine. It was found that in vitro, AT O157 : H7 had significantly decreased adherence accompanied by decreased expression of stcE and toxB but not of the locus of enterocyte effacement (LEE) genes. Expression of gadE, genes involved in quorum sensing, and the global regulators cyaA, hfq, lrp, fis and himA was significantly increased; notably, ureD expression was increased 29-fold compared with NAT O157 : H7. AT O157 : H7 colonized the pig intestine as effectively as NAT O157 : H7 bacteria. Expression of 70 of 72 virulence genes from bacteria recovered from the intestine was similar between AT and NAT O157 : H7, except ureD, pagC and bax, whose level of expression was reduced in the AT bacteria. Genes involved in acid response, regulators gadE, cyaA and hfq, and toxin synthesis genes (stx2A and stx2B) were expressed at significantly reduced levels in the intestine by both AT and NAT strains. Expression in the intestine of the LEE and putative adhesion factors cahA, iha and lpf2 was at levels similar to those in vitro, while ehaA and ureD in NAT O157 : H7 were expressed significantly more highly in vivo than in vitro. These data indicate that AT and NAT O157 : H7 behave differently, and that expression of their virulence genes is regulated differently in vitro from in vivo.
-
- Physiology and Biochemistry
-
-
-
NhaP1 is a K+(Na+)/H+ antiporter required for growth and internal pH homeostasis of Vibrio cholerae at low extracellular pH
More LessVibrio cholerae has adapted to a wide range of salinity, pH and osmotic conditions, enabling it to survive passage through the host and persist in the environment. Among the many proteins responsible for bacterial survival under these diverse conditions, we have identified Vc-NhaP1 as a K+(Na+)/H+ antiporter essential for V. cholerae growth at low environmental pH. Deletion of the V. cholerae nhaP1 gene caused growth inhibition when external potassium was either limited (100 mM and below) or in excess (400 mM and above). This growth defect was most apparent at mid-exponential phase, after 4–6 h of culture. Using a pH-sensitive GFP, cytosolic pH was shown to be dependent on K+ in acidic external conditions in a Vc-NhaP1-dependent manner. When functionally expressed in an antiporterless Escherichia coli strain and assayed in everted membrane vesicles, Vc-NhaP1 operated as an electroneutral alkali cation/proton antiporter, exchanging K+ or Na+ ions for H+ within a broad pH range (7.25–9.0). These data establish the putative V. cholerae NhaP1 protein as a functional K+(Na+)/H+ antiporter of the CPA1 family that is required for bacterial pH homeostasis and growth in an acidic environment.
-
-
-
-
Cereulide produced by Bacillus cereus increases the fitness of the producer organism in low-potassium environments
Cereulide, produced by certain Bacillus cereus strains, is a lipophilic cyclic peptide of 1152 Da that binds K+ ions with high specificity and affinity. It is toxic to humans, but its role for the producer organism is not known. We report here that cereulide operates for B. cereus to scavenge potassium when the environment is growth limiting for this ion. Cereulide-producing B. cereus showed higher maximal growth rates (µmax) than cereulide non-producing B. cereus in K+-deficient medium (K+ concentration ~1 mM). The cereulide-producing strains grew faster in K+-deficient than in K+-rich medium with or without added cereulide. Cereulide non-producing B. cereus neither increased µmax in K+-deficient medium compared with K+-rich medium, nor benefited from added cereulide. Cereulide-producing strains outcompeted GFP-labelled Bacillus thuringiensis in potassium-deficient (K+ concentration ~1 mM) but not in potassium-rich (K+ concentration ~30 mM) medium. Exposure to 2 µM cereulide in potassium-free medium lacking an energy source caused, within seconds, a major efflux of cellular K+ from B. cereus not producing cereulide as well as from Bacillus subtilis. Cereulide depleted the cereulide non-producing B. cereus and B. subtilis cells of a major part of their K+ stores, but did not affect cereulide-producing B. cereus strains. Externally added 6–10 µM cereulide triggered the generation of biofilms and pellicles by B. cereus. The results indicate that both endogenous and externally accessible cereulide supports the fitness of cereulide-producing B. cereus in environments where the potassium concentration is low.
-
-
-
Detoxification of toxins by bacillithiol in Staphylococcus aureus
More LessBacillithiol (BSH), an α-anomeric glycoside of l-cysteinyl-d-glucosaminyl-l-malate, is a major low-molecular-mass thiol found in bacteria such as Bacillus sp., Staphylococcus aureus and Deinococcus radiodurans. Like other low-molecular-mass thiols such as glutathione and mycothiol, BSH is likely to be involved in protection against environmental toxins including thiol-reactive antibiotics. We report here a BSH-dependent detoxification mechanism in S. aureus. When S. aureus Newman strain was treated with monobromobimane and monochlorobimane, the cellular BSH was converted to the fluorescent S-conjugate BS-bimane. A bacillithiol conjugate amidase activity acted upon the BS-bimane to produce Cys-bimane, which was then acetylated by an N-acetyltransferase to generate N-acetyl-Cys-bimane, a mercapturic acid. An S. aureus mutant lacking BSH did not produce mercapturic acid when treated with monobromobimane and monochlorobimane, confirming the involvement of bacillithiol. Furthermore, treatment of S. aureus Newman with rifamycin, the parent compound of the first-line anti-tuberculosis drug, rifampicin, indicated that this thiol-reactive antibiotic is also detoxified in a BSH-dependent manner, since mercapturic acids of rifamycin were observed in the culture medium. These data indicate that toxins and thiol-reactive antibiotics are detoxified to less potent mercapturic acids in a BSH-dependent manner and then exported out of the cell in S. aureus.
-
-
-
Effect of phosphoglycerate mutase and fructose 1,6-bisphosphatase deficiency on symbiotic Burkholderia phymatum
More LessBurkholderia phymatum STM815 is a β-rhizobial strain that can effectively nodulate several species of the large legume genus Mimosa. Two Tn5-induced mutants of this strain, KM16-22 and KM51, failed to form root nodules on Mimosa pudica, but still caused root hair deformation, which is one of the early steps of rhizobial infection. Both mutants grew well in a complex medium. However, KM16-22 could not grow on minimal medium unless a sugar and a metabolic intermediate such as pyruvate were provided, and KM51 also could not grow on minimal medium unless a sugar was added. The Tn5-interrupted genes of the mutants showed strong homologies to pgm, which encodes 2,3-biphosphoglycerate-dependent phosphoglycerate mutase (dPGM), and fbp, which encodes fructose 1,6-bisphosphatase (FBPase). Both enzymes are known to be involved in obligate steps in carbohydrate metabolism. Enzyme assays confirmed that KM16-22 and KM51 had indeed lost dPGM and FBPase activity, respectively, whilst the activities of these enzymes were expressed normally in both free-living bacteria and symbiotic bacteroids of the parental strain STM815. Both mutants recovered their enzyme activity after the introduction of wild-type pgm or fbp genes, were subsequently able to use carbohydrate as a carbon source, and were able to form root nodules on M. pudica and to fix nitrogen as efficiently as the parental strain. We conclude that the enzymes dPGM and FBPase are essential for the formation of a symbiosis with the host plant.
-
Volumes and issues
-
Volume 170 (2024)
-
Volume 169 (2023)
-
Volume 168 (2022)
-
Volume 167 (2021)
-
Volume 166 (2020)
-
Volume 165 (2019)
-
Volume 164 (2018)
-
Volume 163 (2017)
-
Volume 162 (2016)
-
Volume 161 (2015)
-
Volume 160 (2014)
-
Volume 159 (2013)
-
Volume 158 (2012)
-
Volume 157 (2011)
-
Volume 156 (2010)
-
Volume 155 (2009)
-
Volume 154 (2008)
-
Volume 153 (2007)
-
Volume 152 (2006)
-
Volume 151 (2005)
-
Volume 150 (2004)
-
Volume 149 (2003)
-
Volume 148 (2002)
-
Volume 147 (2001)
-
Volume 146 (2000)
-
Volume 145 (1999)
-
Volume 144 (1998)
-
Volume 143 (1997)
-
Volume 142 (1996)
-
Volume 141 (1995)
-
Volume 140 (1994)
-
Volume 139 (1993)
-
Volume 138 (1992)
-
Volume 137 (1991)
-
Volume 136 (1990)
-
Volume 135 (1989)
-
Volume 134 (1988)
-
Volume 133 (1987)
-
Volume 132 (1986)
-
Volume 131 (1985)
-
Volume 130 (1984)
-
Volume 129 (1983)
-
Volume 128 (1982)
-
Volume 127 (1981)
-
Volume 126 (1981)
-
Volume 125 (1981)
-
Volume 124 (1981)
-
Volume 123 (1981)
-
Volume 122 (1981)
-
Volume 121 (1980)
-
Volume 120 (1980)
-
Volume 119 (1980)
-
Volume 118 (1980)
-
Volume 117 (1980)
-
Volume 116 (1980)
-
Volume 115 (1979)
-
Volume 114 (1979)
-
Volume 113 (1979)
-
Volume 112 (1979)
-
Volume 111 (1979)
-
Volume 110 (1979)
-
Volume 109 (1978)
-
Volume 108 (1978)
-
Volume 107 (1978)
-
Volume 106 (1978)
-
Volume 105 (1978)
-
Volume 104 (1978)
-
Volume 103 (1977)
-
Volume 102 (1977)
-
Volume 101 (1977)
-
Volume 100 (1977)
-
Volume 99 (1977)
-
Volume 98 (1977)
-
Volume 97 (1976)
-
Volume 96 (1976)
-
Volume 95 (1976)
-
Volume 94 (1976)
-
Volume 93 (1976)
-
Volume 92 (1976)
-
Volume 91 (1975)
-
Volume 90 (1975)
-
Volume 89 (1975)
-
Volume 88 (1975)
-
Volume 87 (1975)
-
Volume 86 (1975)
-
Volume 85 (1974)
-
Volume 84 (1974)
-
Volume 83 (1974)
-
Volume 82 (1974)
-
Volume 81 (1974)
-
Volume 80 (1974)
-
Volume 79 (1973)
-
Volume 78 (1973)
-
Volume 77 (1973)
-
Volume 76 (1973)
-
Volume 75 (1973)
-
Volume 74 (1973)
-
Volume 73 (1972)
-
Volume 72 (1972)
-
Volume 71 (1972)
-
Volume 70 (1972)
-
Volume 69 (1971)
-
Volume 68 (1971)
-
Volume 67 (1971)
-
Volume 66 (1971)
-
Volume 65 (1971)
-
Volume 64 (1970)
-
Volume 63 (1970)
-
Volume 62 (1970)
-
Volume 61 (1970)
-
Volume 60 (1970)
-
Volume 59 (1969)
-
Volume 58 (1969)
-
Volume 57 (1969)
-
Volume 56 (1969)
-
Volume 55 (1969)
-
Volume 54 (1968)
-
Volume 53 (1968)
-
Volume 52 (1968)
-
Volume 51 (1968)
-
Volume 50 (1968)
-
Volume 49 (1967)
-
Volume 48 (1967)
-
Volume 47 (1967)
-
Volume 46 (1967)
-
Volume 45 (1966)
-
Volume 44 (1966)
-
Volume 43 (1966)
-
Volume 42 (1966)
-
Volume 41 (1965)
-
Volume 40 (1965)
-
Volume 39 (1965)
-
Volume 38 (1965)
-
Volume 37 (1964)
-
Volume 36 (1964)
-
Volume 35 (1964)
-
Volume 34 (1964)
-
Volume 33 (1963)
-
Volume 32 (1963)
-
Volume 31 (1963)
-
Volume 30 (1963)
-
Volume 29 (1962)
-
Volume 28 (1962)
-
Volume 27 (1962)
-
Volume 26 (1961)
-
Volume 25 (1961)
-
Volume 24 (1961)
-
Volume 23 (1960)
-
Volume 22 (1960)
-
Volume 21 (1959)
-
Volume 20 (1959)
-
Volume 19 (1958)
-
Volume 18 (1958)
-
Volume 17 (1957)
-
Volume 16 (1957)
-
Volume 15 (1956)
-
Volume 14 (1956)
-
Volume 13 (1955)
-
Volume 12 (1955)
-
Volume 11 (1954)
-
Volume 10 (1954)
-
Volume 9 (1953)
-
Volume 8 (1953)
-
Volume 7 (1952)
-
Volume 6 (1952)
-
Volume 5 (1951)
-
Volume 4 (1950)
-
Volume 3 (1949)
-
Volume 2 (1948)
-
Volume 1 (1947)