1887

Abstract

Cereulide, produced by certain strains, is a lipophilic cyclic peptide of 1152 Da that binds K ions with high specificity and affinity. It is toxic to humans, but its role for the producer organism is not known. We report here that cereulide operates for to scavenge potassium when the environment is growth limiting for this ion. Cereulide-producing showed higher maximal growth rates (µ) than cereulide non-producing in K-deficient medium (K concentration ~1 mM). The cereulide-producing strains grew faster in K-deficient than in K-rich medium with or without added cereulide. Cereulide non-producing neither increased µ in K-deficient medium compared with K-rich medium, nor benefited from added cereulide. Cereulide-producing strains outcompeted GFP-labelled in potassium-deficient (K concentration ~1 mM) but not in potassium-rich (K concentration ~30 mM) medium. Exposure to 2 µM cereulide in potassium-free medium lacking an energy source caused, within seconds, a major efflux of cellular K from not producing cereulide as well as from Cereulide depleted the cereulide non-producing and cells of a major part of their K stores, but did not affect cereulide-producing strains. Externally added 6–10 µM cereulide triggered the generation of biofilms and pellicles by . The results indicate that both endogenous and externally accessible cereulide supports the fitness of cereulide-producing in environments where the potassium concentration is low.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.053520-0
2012-04-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/4/1106.html?itemId=/content/journal/micro/10.1099/mic.0.053520-0&mimeType=html&fmt=ahah

References

  1. Agaisse H., Lereclus D. ( 1994). Expression in Bacillus subtilis of the Bacillus thuringiensis cryIIIA toxin gene is not dependent on a sporulation-specific sigma factor and is increased in a spo0A mutant. J Bacteriol 176:4734–4741[PubMed]
    [Google Scholar]
  2. Agata N., Mori M., Ohta M., Suwan S., Ohtani I., Isobe M. ( 1994). A novel dodecadepsipeptide, cereulide, isolated from Bacillus cereus causes vacuole formation in HEp-2 cells. FEMS Microbiol Lett 121:31–34[PubMed]
    [Google Scholar]
  3. Altayar M., Sutherland A. D. ( 2006). Bacillus cereus is common in the environment but emetic toxin producing isolates are rare. J Appl Microbiol 100:7–14 [View Article][PubMed]
    [Google Scholar]
  4. Andersson M. A., Laukkanen M., Nurmiaho-Lassila E. L., Rainey F., Niemelä S., Salkinoja-Salonen M. ( 1995). Bacillus thermosphaericus sp. nov., a new thermophilic ureolytic Bacillus isolated from air. Syst Appl Microbiol 18:203–220 [View Article]
    [Google Scholar]
  5. Andersson M. A., Mikkola R., Helin J., Andersson M. C., Salkinoja-Salonen M. ( 1998a). A novel sensitive bioassay for detection of Bacillus cereus emetic toxin and related depsipeptide ionophores. Appl Environ Microbiol 64:1338–1343[PubMed]
    [Google Scholar]
  6. Andersson M. A., Mikkola R., Kroppenstedt R. M., Rainey F. A., Peltola J., Helin J., Sivonen K., Salkinoja-Salonen M. S. ( 1998b). The mitochondrial toxin produced by Streptomyces griseus strains isolated from an indoor environment is valinomycin. Appl Environ Microbiol 64:4767–4773[PubMed]
    [Google Scholar]
  7. Andersson M. A., Jääskeläinen E. L., Shaheen R., Pirhonen T., Wijnands L. M., Salkinoja-Salonen M. S. ( 2004). Sperm bioassay for rapid detection of cereulide-producing Bacillus cereus in food and related environments. Int J Food Microbiol 94:175–183 [View Article][PubMed]
    [Google Scholar]
  8. Andersson M. A., Hakulinen P., Honkalampi-Hämäläinen U., Hoornstra D., Lhuguenot J. C., Mäki-Paakkanen J., Savolainen M., Severin I., Stammati A. L. & other authors ( 2007). Toxicological profile of cereulide, the Bacillus cereus emetic toxin, in functional assays with human, animal and bacterial cells. Toxicon 49:351–367 [View Article][PubMed]
    [Google Scholar]
  9. Apetroaie C., Andersson M. A., Spröer C., Tsitko I., Shaheen R., Jääskeläinen E. L., Wijnands L. M., Heikkilä R., Salkinoja-Salonen M. S. ( 2005). Cereulide-producing strains of Bacillus cereus show diversity. Arch Microbiol 184:141–151 [View Article][PubMed]
    [Google Scholar]
  10. Apetroaie-Constantin C., Shaheen R., Andrup L., Smidt L., Rita H., Salkinoja-Salonen M. ( 2008). Environment driven cereulide production by emetic strains of Bacillus cereus . Int J Food Microbiol 127:60–67 [View Article][PubMed]
    [Google Scholar]
  11. Booth I. R., Epstein W., Giffard P. M., Rowland G. C. ( 1985). Roles of the trkB and trkC gene products of Escherichia coli in K+ transport. Biochimie 67:83–89 [View Article][PubMed]
    [Google Scholar]
  12. Busse H. J., Denner E. B., Buczolits S., Salkinoja-Salonen M., Bennasar A., Kämpfer P. ( 2003). Sphingomonas aurantiaca sp. nov., Sphingomonas aerolata sp. nov. and Sphingomonas faeni sp. nov., air- and dustborne and Antarctic, orange-pigmented, psychrotolerant bacteria, and emended description of the genus Sphingomonas . Int J Syst Evol Microbiol 53:1253–1260 [View Article][PubMed]
    [Google Scholar]
  13. Carlin F., Fricker M., Pielaat A., Heisterkamp S., Shaheen R., Salonen M. S., Svensson B., Nguyen-the C., Ehling-Schulz M. ( 2006). Emetic toxin-producing strains of Bacillus cereus show distinct characteristics within the Bacillus cereus group. Int J Food Microbiol 109:132–138 [View Article][PubMed]
    [Google Scholar]
  14. Ceuppens S., Rajkovic A., Heyndrickx M., Tsilia V., Van De Wiele T., Boon N., Uyttendaele M. ( 2011). Regulation of toxin production by Bacillus cereus and its food safety implications. Crit Rev Microbiol 37:188–213 [View Article][PubMed]
    [Google Scholar]
  15. Corratgé-Faillie C., Jabnoune M., Zimmermann S., Véry A. A., Fizames C., Sentenac H. ( 2010). Potassium and sodium transport in non-animal cells: the Trk/Ktr/HKT transporter family. Cell Mol Life Sci 67:2511–2532 [View Article][PubMed]
    [Google Scholar]
  16. Dierick K., Van Coillie E., Swiecicka I., Meyfroidt G., Devlieger H., Meulemans A., Hoedemaekers G., Fourie L., Heyndrickx M., Mahillon J. ( 2005). Fatal family outbreak of Bacillus cereus-associated food poisoning. J Clin Microbiol 43:4277–4279 [View Article][PubMed]
    [Google Scholar]
  17. Ehling-Schulz M., Vukov N., Schulz A., Shaheen R., Andersson M., Märtlbauer E., Scherer S. ( 2005). Identification and partial characterization of the nonribosomal peptide synthetase gene responsible for cereulide production in emetic Bacillus cereus . Appl Environ Microbiol 71:105–113 [View Article][PubMed]
    [Google Scholar]
  18. Ekman J., Tsitko I., Weber A., Nielsen-LeRoux C., Lereclus D., Salkinoja-Salonen M. ( 2009). Transfer of Bacillus cereus spores from packaging paper into food. J Food Prot 72:2236–2242[PubMed]
    [Google Scholar]
  19. Epstein W. ( 2003). The roles and regulation of potassium in bacteria. Prog Nucleic Acid Res Mol Biol 75:293–320 [View Article][PubMed]
    [Google Scholar]
  20. Hallaksela A., Väisänen O. M., Salkinoja-Salonen M. S. ( 1991). Identification of Bacillus species isolated form Picea abies by physiological tests, phage typing and fatty acid analysis. Scand J Forestry Res 6:365–377 [View Article]
    [Google Scholar]
  21. Hoornstra D., Andersson M. A., Mikkola R., Salkinoja-Salonen M. S. ( 2003). A new method for in vitro detection of microbially produced mitochondrial toxins. Toxicol In Vitro 17:745–751 [View Article][PubMed]
    [Google Scholar]
  22. Horwood P. F., Burgess G. W., Oakey H. J. ( 2004). Evidence for non-ribosomal peptide synthetase production of cereulide (the emetic toxin) in Bacillus cereus . FEMS Microbiol Lett 236:319–324 [View Article][PubMed]
    [Google Scholar]
  23. Hoton F. M., Fornelos N., N’Guessan E., Hu X., Swiecicka I., Dierick K., Jääskeläinen E., Salkinoja-Salonen M., Mahillon J. ( 2009). Family portrait of Bacillus cereus and Bacillus weihenstephanensis cereulide-producing strains. Environm Microbiol Rep 1:177–183 [View Article]
    [Google Scholar]
  24. Ichikawa K., Gakumazawa M., Inaba A., Shiga K., Takeshita S., Mori M., Kikuchi N. ( 2010). Acute encephalopathy of Bacillus cereus mimicking Reye syndrome. Brain Dev 32:688–690 [View Article][PubMed]
    [Google Scholar]
  25. Ivanova N., Sorokin A., Anderson I., Galleron N., Candelon B., Kapatral V., Bhattacharyya A., Reznik G., Mikhailova N. & other authors ( 2003). Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis . Nature 423:87–91 [View Article][PubMed]
    [Google Scholar]
  26. Jääskeläinen E. ( 2008).Bacillus cereusDissertationes Biocentrianum Molecularium Universitatis Helsingiensis in Viikki
  27. Jääskeläinen E. L., Häggblom M. M., Andersson M. A., Vanne L., Salkinoja-Salonen M. S. ( 2003a). Potential of Bacillus cereus for producing an emetic toxin, cereulide, in bakery products: quantitative analysis by chemical and biological methods. J Food Prot 66:1047–1054[PubMed]
    [Google Scholar]
  28. Jääskeläinen E. L., Teplova V., Andersson M. A., Andersson L. C., Tammela P., Andersson M. C., Pirhonen T. I., Saris N. E., Vuorela P., Salkinoja-Salonen M. S. ( 2003b). In vitro assay for human toxicity of cereulide, the emetic mitochondrial toxin produced by food poisoning Bacillus cereus . Toxicol In Vitro 17:737–744 [View Article][PubMed]
    [Google Scholar]
  29. Jääskeläinen E. L., Häggblom M. M., Andersson M. A., Salkinoja-Salonen M. S. ( 2004). Atmospheric oxygen and other conditions affecting the production of cereulide by Bacillus cereus in food. Int J Food Microbiol 96:75–83 [View Article][PubMed]
    [Google Scholar]
  30. Koch A. L. ( 1994). Growth Measurement. Methods for General and Molecular Bacteriology248–277 Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  31. Kolari M., Schmidt U., Kuismanen E., Salkinoja-Salonen M. S. ( 2002). Firm but slippery attachment of Deinococcus geothermalis . J Bacteriol 184:2473–2480 [View Article][PubMed]
    [Google Scholar]
  32. Kröning N., Willenborg M., Tholema N., Hänelt I., Schmid R., Bakker E. P. ( 2007). ATP binding to the KTN/RCK subunit KtrA from the K+-uptake system KtrAB of Vibrio alginolyticus: its role in the formation of the KtrAB complex and its requirement in vivo. J Biol Chem 282:14018–14027 [View Article][PubMed]
    [Google Scholar]
  33. Kuo M. M., Haynes W. J., Loukin S. H., Kung C., Saimi Y. ( 2005). Prokaryotic K+ channels: from crystal structures to diversity. FEMS Microbiol Rev 29:961–985 [View Article][PubMed]
    [Google Scholar]
  34. López D., Fischbach M. A., Chu F., Losick R., Kolter R. ( 2009). Structurally diverse natural products that cause potassium leakage trigger multicellularity in Bacillus subtilis . Proc Natl Acad Sci U S A 106:280–285 [View Article][PubMed]
    [Google Scholar]
  35. Mahler H., Pasi A., Kramer J. M., Schulte P., Scoging A. C., Bär W., Krähenbühl S. ( 1997). Fulminant liver failure in association with the emetic toxin of Bacillus cereus . N Engl J Med 336:1142–1148 [View Article][PubMed]
    [Google Scholar]
  36. Makarasen A., Yoza K., Isobe M. ( 2009). Higher structure of cereulide, an emetic toxin from Bacillus cereus, and special comparison with valinomycin, an antibiotic from Streptomyces fulvissimus . Chem Asian J 4:688–698 [View Article][PubMed]
    [Google Scholar]
  37. Mikkola R., Saris N. E., Grigoriev P. A., Andersson M. A., Salkinoja-Salonen M. S. ( 1999). Ionophoretic properties and mitochondrial effects of cereulide: the emetic toxin of B. cereus . Eur J Biochem 263:112–117 [View Article][PubMed]
    [Google Scholar]
  38. Pirttijärvi T. S., Andersson M. A., Scoging A. C., Salkinoja-Salonen M. S. ( 1999). Evaluation of methods for recognising strains of the Bacillus cereus group with food poisoning potential among industrial and environmental contaminants. Syst Appl Microbiol 22:133–144 [View Article][PubMed]
    [Google Scholar]
  39. Pósfay-Barbe K. M., Schrenzel J., Frey J., Studer R., Korff C., Belli D. C., Parvex P., Rimensberger P. C., Schäppi M. G. ( 2008). Food poisoning as a cause of acute liver failure. Pediatr Infect Dis J 27:846–847 [View Article][PubMed]
    [Google Scholar]
  40. Reers M., Smiley S. T., Mottola-Hartshorn C., Chen A., Lin M., Chen L. B. ( 1995). Mitochondrial membrane potential monitored by JC-1 dye. Methods Enzymol 260:406–417 [View Article][PubMed]
    [Google Scholar]
  41. Saris N.-E. L., Andersson M. A., Mikkola R., Andersson L. C., Teplova V. V., Grigoriev P. A., Salkinoja-Salonen M. S. ( 2009). Microbial toxin’s effect on mitochondrial survival by increasing K+ uptake. Toxicol Ind Health 25:441–446 [View Article][PubMed]
    [Google Scholar]
  42. Shaheen R. ( 2009).Bacillus cereusDissertationes Biocentrianum Molecularium Universitatis Helsingiensis in Viikki
  43. Shaheen R., Andersson M. A., Apetroaie C., Schulz A., Ehling-Schulz M., Ollilainen V. M., Salkinoja-Salonen M. S. ( 2006). Potential of selected infant food formulas for production of Bacillus cereus emetic toxin, cereulide. Int J Food Microbiol 107:287–294 [View Article][PubMed]
    [Google Scholar]
  44. Shaheen R., Svensson B., Andersson M. A., Christiansson A., Salkinoja-Salonen M. ( 2010). Persistence strategies of Bacillus cereus spores isolated from dairy silo tanks. Food Microbiol 27:347–355 [View Article][PubMed]
    [Google Scholar]
  45. Shiota M., Saitou K., Mizumoto H., Matsusaka M., Agata N., Nakayama M., Kage M., Tatsumi S., Okamoto A. & other authors ( 2010). Rapid detoxification of cereulide in Bacillus cereus food poisoning. Pediatrics 125:e951–e955 [View Article][PubMed]
    [Google Scholar]
  46. Smith N. R., Gibson T., Gordon R. E., Sneath P. H. ( 1964). Type cultures and proposed neotype cultures of some species in the genus Bacillus . J Gen Microbiol 34:269–272[PubMed] [CrossRef]
    [Google Scholar]
  47. Tempelaars M. H., Rodrigues S., Abee T. ( 2011). Comparative analysis of antimicrobial activities of valinomycin and cereulide, the Bacillus cereus emetic toxin. Appl Environ Microbiol 77:2755–2762 [View Article][PubMed]
    [Google Scholar]
  48. Teplova V. V., Mikkola R., Tonshin A. A., Saris N. E., Salkinoja-Salonen M. S. ( 2006). The higher toxicity of cereulide relative to valinomycin is due to its higher affinity for potassium at physiological plasma concentration. Toxicol Appl Pharmacol 210:39–46 [View Article][PubMed]
    [Google Scholar]
  49. Toh M., Moffitt M. C., Henrichsen L., Raftery M., Barrow K., Cox J. M., Marquis C. P., Neilan B. A. ( 2004). Cereulide, the emetic toxin of Bacillus cereus, is putatively a product of nonribosomal peptide synthesis. J Appl Microbiol 97:992–1000 [View Article][PubMed]
    [Google Scholar]
  50. Tonshin A. A., Teplova V. V., Andersson M. A., Salkinoja-Salonen M. S. ( 2010). The Fusarium mycotoxins enniatins and beauvericin cause mitochondrial dysfunction by affecting the mitochondrial volume regulation, oxidative phosphorylation and ion homeostasis. Toxicology 276:49–57 [View Article][PubMed]
    [Google Scholar]
  51. Turnbull P. C., Kramer J. M., Jørgensen K., Gilbert R. J., Melling J. ( 1979). Properties and production characteristics of vomiting, diarrheal, and necrotizing toxins of Bacillus cereus . Am J Clin Nutr 32:219–228[PubMed]
    [Google Scholar]
  52. Ueda S., Kuwabara Y. ( 1993). An ecological study of B. cereus in rice crop processing. J Antibact Antifungal Ag 21:449–502
    [Google Scholar]
  53. Virtanen S. M., Roivainen M., Andersson M. A., Ylipaasto P., Hoornstra D., Mikkola R., Salkinoja-Salonen M. S. ( 2008). In vitro toxicity of cereulide on porcine pancreatic Langerhans islets. Toxicon 51:1029–1037 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.053520-0
Loading
/content/journal/micro/10.1099/mic.0.053520-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error