1887

Abstract

O157 : H7 cells that interact with intestinal epithelial cells in animals and humans do so after passage through the low pH of the stomach. This study compared adherence and its associated virulence gene expression in acid-treated (AT) and non-acid treated (NAT) O157 : H7 strain 86-24 and in ligated pig intestine. It was found that , AT O157 : H7 had significantly decreased adherence accompanied by decreased expression of and but not of the locus of enterocyte effacement (LEE) genes. Expression of , genes involved in quorum sensing, and the global regulators , , , and was significantly increased; notably, expression was increased 29-fold compared with NAT O157 : H7. AT O157 : H7 colonized the pig intestine as effectively as NAT O157 : H7 bacteria. Expression of 70 of 72 virulence genes from bacteria recovered from the intestine was similar between AT and NAT O157 : H7, except , and , whose level of expression was reduced in the AT bacteria. Genes involved in acid response, regulators , and , and toxin synthesis genes ( and ) were expressed at significantly reduced levels in the intestine by both AT and NAT strains. Expression in the intestine of the LEE and putative adhesion factors , and was at levels similar to those , while and in NAT O157 : H7 were expressed significantly more highly than . These data indicate that AT and NAT O157 : H7 behave differently, and that expression of their virulence genes is regulated differently from .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.056101-0
2012-04-01
2020-01-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/4/1084.html?itemId=/content/journal/micro/10.1099/mic.0.056101-0&mimeType=html&fmt=ahah

References

  1. Argenzio R. A., Southworth M., Stevens C. E.. ( 1974;). Sites of organic acid production and absorption in the equine gastrointestinal tract. Am J Physiol226:1043–1050[PubMed]
    [Google Scholar]
  2. Badea L., Doughty S., Nicholls L., Sloan J., Robins-Browne R. M., Hartland E. L.. ( 2003;). Contribution of Efa1/LifA to the adherence of enteropathogenic Escherichia coli to epithelial cells. Microb Pathog34:205–215 [CrossRef][PubMed]
    [Google Scholar]
  3. Benjamin M. M., Datta A. R.. ( 1995;). Acid tolerance of enterohemorrhagic Escherichia coli. Appl Environ Microbiol61:1669–1672[PubMed]
    [Google Scholar]
  4. Brinkman A. B., Ettema T. J., de Vos W. M., van der Oost J.. ( 2003;). The Lrp family of transcriptional regulators. Mol Microbiol48:287–294 [CrossRef][PubMed]
    [Google Scholar]
  5. Camilleri M., Colemont L. J., Phillips S. F., Brown M. L., Thomforde G. M., Chapman N., Zinsmeister A. R.. ( 1989;). Human gastric emptying and colonic filling of solids characterized by a new method. Am J Physiol257:G284–G290[PubMed]
    [Google Scholar]
  6. Castanié-Cornet M. P., Treffandier H., Francez-Charlot A., Gutierrez C., Cam K.. ( 2007;). The glutamate-dependent acid resistance system in Escherichia coli: essential and dual role of the His–Asp phosphorelay RcsCDB/AF. Microbiology153:238–246 [CrossRef][PubMed]
    [Google Scholar]
  7. de Sablet T., Chassard C., Bernalier-Donadille A., Vareille M., Gobert A. P., Martin C.. ( 2009;). Human microbiota-secreted factors inhibit Shiga toxin synthesis by enterohemorrhagic Escherichia coli O157 : H7. Infect Immun77:783–790 [CrossRef][PubMed]
    [Google Scholar]
  8. Dong T., Schellhorn H. E.. ( 2009;). Global effect of RpoS on gene expression in pathogenic Escherichia coli O157 : H7 strain EDL933. BMC Genomics10:349 [CrossRef][PubMed]
    [Google Scholar]
  9. Elliott S. J., Hutcheson S. W., Dubois M. S., Mellies J. L., Wainwright L. A., Batchelor M., Frankel G., Knutton S., Kaper J. B.. ( 1999;). Identification of CesT, a chaperone for the type III secretion of Tir in enteropathogenic Escherichia coli. Mol Microbiol33:1176–1189 [CrossRef][PubMed]
    [Google Scholar]
  10. Ferens W. A., Hovde C. J.. ( 2011;). Escherichia coli O157 : H7: animal reservoir and sources of human infection. Foodborne Pathog Dis8:465–487 [CrossRef][PubMed]
    [Google Scholar]
  11. Foster J. W.. ( 2004;). Escherichia coli acid resistance: tales of an amateur acidophile. Nat Rev Microbiol2:898–907 [CrossRef][PubMed]
    [Google Scholar]
  12. Grauke L. J., Kudva I. T., Yoon J. W., Hunt C. W., Williams C. J., Hovde C. J.. ( 2002;). Gastrointestinal tract location of Escherichia coli O157 : H7 in ruminants. Appl Environ Microbiol68:2269–2277 [CrossRef][PubMed]
    [Google Scholar]
  13. Grys T. E., Siegel M. B., Lathem W. W., Welch R. A.. ( 2005;). The StcE protease contributes to intimate adherence of enterohemorrhagic Escherichia coli O157 : H7 to host cells. Infect Immun73:1295–1303 [CrossRef][PubMed]
    [Google Scholar]
  14. Gyles C. L.. ( 2007;). Shiga toxin-producing Escherichia coli: an overview. J Anim Sci85:Suppl.E45–E62 [CrossRef][PubMed]
    [Google Scholar]
  15. Hersh B. M., Farooq F. T., Barstad D. N., Blankenhorn D. L., Slonczewski J. L.. ( 1996;). A glutamate-dependent acid resistance gene in Escherichia coli. J Bacteriol178:3978–3981[PubMed]
    [Google Scholar]
  16. House B., Kus J. V., Prayitno N., Mair R., Que L., Chingcuanco F., Gannon V., Cvitkovitch D. G., Barnett Foster D.. ( 2009;). Acid-stress-induced changes in enterohaemorrhagic Escherichia coli O157 : H7 virulence. Microbiology155:2907–2918 [CrossRef][PubMed]
    [Google Scholar]
  17. Hughes D. T., Terekhova D. A., Liou L., Hovde C. J., Sahl J. W., Patankar A. V., Gonzalez J. E., Edrington T. S., Rasko D. A., Sperandio V.. ( 2010;). Chemical sensing in mammalian host–bacterial commensal associations. Proc Natl Acad Sci U S A107:9831–9836 [CrossRef][PubMed]
    [Google Scholar]
  18. Kailasan Vanaja S., Bergholz T. M., Whittam T. S.. ( 2009;). Characterization of the Escherichia coli O157 : H7 Sakai GadE regulon. J Bacteriol191:1868–1877 [CrossRef][PubMed]
    [Google Scholar]
  19. Kaper J. B., Nataro J. P., Mobley H. L.. ( 2004;). Pathogenic Escherichia coli. Nat Rev Microbiol2:123–140 [CrossRef][PubMed]
    [Google Scholar]
  20. Karmali M. A., Gannon V., Sargeant J. M.. ( 2010;). Verocytotoxin-producing Escherichia coli (VTEC). Vet Microbiol140:360–370 [CrossRef][PubMed]
    [Google Scholar]
  21. Keeney K. M., Finlay B. B.. ( 2011;). Enteric pathogen exploitation of the microbiota-generated nutrient environment of the gut. Curr Opin Microbiol14:92–98 [CrossRef][PubMed]
    [Google Scholar]
  22. Kulasekara B. R., Jacobs M., Zhou Y., Wu Z., Sims E., Saenphimmachak C., Rohmer L., Ritchie J. M., Radey M.. & other authors ( 2009;). Analysis of the genome of the Escherichia coli O157 : H7 2006 spinach-associated outbreak isolate indicates candidate genes that may enhance virulence. Infect Immun77:3713–3721 [CrossRef][PubMed]
    [Google Scholar]
  23. Lim J. Y., Yoon J., Hovde C. J.. ( 2010;). A brief overview of Escherichia coli O157 : H7 and its plasmid O157. J Microbiol Biotechnol20:5–14[PubMed]
    [Google Scholar]
  24. Lin J., Smith M. P., Chapin K. C., Baik H. S., Bennett G. N., Foster J. W.. ( 1996;). Mechanisms of acid resistance in enterohemorrhagic Escherichia coli. Appl Environ Microbiol62:3094–3100[PubMed]
    [Google Scholar]
  25. Livak K. J., Schmittgen T. D.. ( 2001;). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔC T method. Methods25:402–408 [CrossRef][PubMed]
    [Google Scholar]
  26. Ma Z., Richard H., Foster J. W.. ( 2003;). pH-dependent modulation of cyclic AMP levels and GadW-dependent repression of RpoS affect synthesis of the GadX regulator and Escherichia coli acid resistance. J Bacteriol185:6852–6859 [CrossRef][PubMed]
    [Google Scholar]
  27. Manning S. D., Motiwala A. S., Springman A. C., Qi W., Lacher D. W., Ouellette L. M., Mladonicky J. M., Somsel P., Rudrik J. T.. & other authors ( 2008;). Variation in virulence among clades of Escherichia coli O157 : H7 associated with disease outbreaks. Proc Natl Acad Sci U S A105:4868–4873 [CrossRef][PubMed]
    [Google Scholar]
  28. Mobley H. L., Island M. D., Hausinger R. P.. ( 1995;). Molecular biology of microbial ureases. Microbiol Rev59:451–480[PubMed]
    [Google Scholar]
  29. Nakanishi N., Tashiro K., Kuhara S., Hayashi T., Sugimoto N., Tobe T.. ( 2009;). Regulation of virulence by butyrate sensing in enterohaemorrhagic Escherichia coli. Microbiology155:521–530 [CrossRef][PubMed]
    [Google Scholar]
  30. Olesen I., Thorsen L., Jespersen L.. ( 2010;). Relative transcription of Listeria monocytogenes virulence genes in liver pâtés with varying NaCl content. Int J Food Microbiol141:Suppl. 1S60–S68 [CrossRef][PubMed]
    [Google Scholar]
  31. Shakhnovich E. A., Davis B. M., Waldor M. K.. ( 2009;). Hfq negatively regulates type III secretion in EHEC and several other pathogens. Mol Microbiol74:347–363 [CrossRef][PubMed]
    [Google Scholar]
  32. Steyert S. R., Rasko D. A., Kaper J. B.. ( 2011;). Functional and phylogenetic analysis of ureD in Shiga toxin-producing Escherichia coli. J Bacteriol193:875–886 [CrossRef][PubMed]
    [Google Scholar]
  33. Tatsuno I., Nagano K., Taguchi K., Rong L., Mori H., Sasakawa C.. ( 2003;). Increased adherence to Caco-2 cells caused by disruption of the yhiE and yhiF genes in enterohemorrhagic Escherichia coli O157 : H7. Infect Immun71:2598–2606 [CrossRef][PubMed]
    [Google Scholar]
  34. Teunis P., Takumi K., Shinagawa K.. ( 2004;). Dose response for infection by Escherichia coli O157 : H7 from outbreak data. Risk Anal24:401–407 [CrossRef][PubMed]
    [Google Scholar]
  35. Wells T. J., Sherlock O., Rivas L., Mahajan A., Beatson S. A., Torpdahl M., Webb R. I., Allsopp L. P., Gobius K. S.. & other authors ( 2008;). EhaA is a novel autotransporter protein of enterohemorrhagic Escherichia coli O157 : H7 that contributes to adhesion and biofilm formation. Environ Microbiol10:589–604 [CrossRef][PubMed]
    [Google Scholar]
  36. Yin X., Chambers J. R., Wheatcroft R., Johnson R. P., Zhu J., Liu B., Gyles C. L.. ( 2009a;). Adherence of Escherichia coli O157 : H7 mutants in vitro and in ligated pig intestines. Appl Environ Microbiol75:4975–4983 [CrossRef][PubMed]
    [Google Scholar]
  37. Yin X., Wheatcroft R., Chambers J. R., Liu B., Zhu J., Gyles C. L.. ( 2009b;). Contributions of O island 48 to adherence of enterohemorrhagic Escherichia coli O157 : H7 to epithelial cells in vitro and in ligated pig ileal loops. Appl Environ Microbiol75:5779–5786 [CrossRef][PubMed]
    [Google Scholar]
  38. Yin X., Feng Y., Wheatcroft R., Chambers J., Gong J., Gyles C. L.. ( 2011a;). Adherence of Escherichia coli O157 : H7 to epithelial cells in vitro and in pig gut loops is affected by bacterial culture conditions. Can J Vet Res75:81–88[PubMed]
    [Google Scholar]
  39. Yin X., Zhu J., Feng Y., Chambers J. R., Gong J., Gyles C. L.. ( 2011;b). Differential gene expression and adherence of Escherichia coli O157 : H7 in vitro and in ligated pig intestines. PLoS ONE6:e17424 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.056101-0
Loading
/content/journal/micro/10.1099/mic.0.056101-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error