-
Volume 9,
Issue 2,
2023
Volume 9, Issue 2, 2023
- Outbreak Reports
-
- Pathogens and Epidemiology
-
-
Streptococcus suis outbreak caused by an emerging zoonotic strain with acquired multi-drug resistance in Thailand
Streptococcus suis is an emerging zoonotic swine pathogen which can cause severe infections in humans. In March 2021, an outbreak of S. suis infections with 19 confirmed cases of septicemia and meningitis leading to two deaths, occurred in Nakhon Ratchasima province, Thailand. We characterized the outbreak through an epidemiological investigation combined with Illumina and Nanopore whole genome sequencing (WGS). The source of the outbreak was traced back to a raw pork dish prepared from a single pig during a Buddhist ceremony attended by 241 people. WGS analysis revealed that a single S. suis serotype 2 strain belonging to a novel sequence type (ST) of the emergent Thai zoonotic clade CC233/379, was responsible for the infections. The outbreak clone grouped together with other Thai zoonotic strains from CC233/379 and CC104 in a global S. suis phylogeny and capsule switching events between serotype 2 zoonotic strains and serotype 7 porcine strains were identified. The outbreak strain showed reduced susceptibility to penicillin corresponding with mutations in key residues in the penicillin binding proteins (PBPs). Furthermore, the outbreak strain was resistant to tetracycline, erythromycin, clindamycin, linezolid and chloramphenicol, having acquired an integrative and conjugative element (ICE) carrying resistance genes tetO and ermB, as well as a transposon from the IS1216 family carrying optrA and ermA. This investigation demonstrates that multi-drug resistant zoonotic lineages of S. suis which pose a threat to human health continue to emerge.
-
- Research Articles
-
- Genomic Methodologies
-
-
Nanopore-only assemblies for genomic surveillance of the global priority drug-resistant pathogen, Klebsiella pneumoniae
Oxford Nanopore Technologies (ONT) sequencing has rich potential for genomic epidemiology and public health investigations of bacterial pathogens, particularly in low-resource settings and at the point of care, due to its portability and affordability. However, low base-call accuracy has limited the reliability of ONT data for critical tasks such as antimicrobial resistance (AMR) and virulence gene detection and typing, serotype prediction, and cluster identification. Thus, Illumina sequencing remains the standard for genomic surveillance despite higher capital and running costs. We tested the accuracy of ONT-only assemblies for common applied bacterial genomics tasks (genotyping and cluster detection, implemented via Kleborate, Kaptive and Pathogenwatch), using data from 54 unique Klebsiella pneumoniae isolates. ONT reads generated via MinION with R9.4.1 flowcells were basecalled using three alternative models [Fast, High-accuracy (HAC) and Super-accuracy (SUP), available within ONT’s Guppy software], assembled with Flye and polished using Medaka. Accuracy of typing using ONT-only assemblies was compared with that of Illumina-only and hybrid ONT+Illumina assemblies, constructed from the same isolates as reference standards. The most resource-intensive ONT-assembly approach (SUP basecalling, with or without Medaka polishing) performed best, yielding reliable capsule (K) type calls for all strains (100 % exact or best matching locus), reliable multi-locus sequence type (MLST) assignment (98.3 % exact match or single-locus variants), and good detection of acquired AMR genes and mutations (88–100 % correct identification across the various drug classes). Distance-based trees generated from SUP+Medaka assemblies accurately reflected overall genetic relationships between isolates. The definition of outbreak clusters from ONT-only assemblies was problematic due to inflation of SNP counts by high base-call errors. However, ONT data could be reliably used to ‘rule out’ isolates of distinct lineages from suspected transmission clusters. HAC basecalling + Medaka polishing performed similarly to SUP basecalling without polishing. Therefore, we recommend investing compute resources into basecalling (SUP model), wherever compute resources and time allow, and note that polishing is also worthwhile for improved performance. Overall, our results show that MLST, K type and AMR determinants can be reliably identified with ONT-only R9.4.1 flowcell data. However, cluster detection remains challenging with this technology.
-
- Functional Genomics and Microbe–Niche Interactions
-
-
Pyridoxal 5’-phosphate synthesis and salvage in Bacteria and Archaea: predicting pathway variant distributions and holes
More LessPyridoxal 5’-phosphate or PLP is a cofactor derived from B6 vitamers and essential for growth in all known organisms. PLP synthesis and salvage pathways are well characterized in a few model species even though key components, such as the vitamin B6 transporters, are still to be identified in many organisms including the model bacteria Escherichia coli or Bacillus subtilis . Using a comparative genomic approach, PLP synthesis and salvage pathways were predicted in 5840 bacterial and archaeal species with complete genomes. The distribution of the two known de novo biosynthesis pathways and previously identified cases of non-orthologous displacements were surveyed in the process. This analysis revealed that several PLP de novo pathway genes remain to be identified in many organisms, either because sequence similarity alone cannot be used to discriminate among several homologous candidates or due to non-orthologous displacements. Candidates for some of these pathway holes were identified using published TnSeq data, but many remain. We find that ~10 % of the analysed organisms rely on salvage but further analyses will be required to identify potential transporters. This work is a starting point to model the exchanges of B6 vitamers in communities, predict the sensitivity of a given organism to drugs targeting PLP synthesis enzymes, and identify numerous gaps in knowledge that will need to be tackled in the years to come.
-
-
-
Identification of essential genes in Coxiella burnetii
More LessCoxiella burnetii is an intracellular pathogen responsible for causing Q fever in humans, a disease with varied presentations ranging from a mild flu-like sickness to a debilitating illness that can result in endocarditis. The intracellular lifestyle of C. burnetii is unique, residing in an acidic phagolysosome-like compartment within host cells. An understanding of the core molecular biology of C. burnetii will greatly increase our understanding of C. burnetii growth, survival and pathogenesis. We used transposon-directed insertion site sequencing (TraDIS) to reveal C. burnetii Nine Mile Phase II genes fundamental for growth and in vitro survival. Screening a transposon library containing >10 000 unique transposon mutants revealed 512 predicted essential genes. Essential routes of synthesis were identified for the mevalonate pathway, as well as peptidoglycan and biotin synthesis. Some essential genes identified (e.g. predicted type IV secretion system effector genes) are typically considered to be associated with C. burnetii virulence, a caveat concerning the axenic media used in the study. Investigation into the conservation of the essential genes identified revealed that 78 % are conserved across all C. burnetii strains sequenced to date, which probably play critical functions. This is the first report of a whole genome transposon screen in C. burnetii that has been undertaken for the identification of essential genes.
-
- Microbial Communities
-
-
One to host them all: genomics of the diverse bacterial endosymbionts of the spider Oedothorax gibbosus
Bacterial endosymbionts of the groups Wolbachia , Cardinium and Rickettsiaceae are well known for their diverse effects on their arthropod hosts, ranging from mutualistic relationships to reproductive phenotypes. Here, we analysed a unique system in which the dwarf spider Oedothorax gibbosus is co-infected with up to five different endosymbionts affiliated with Wolbachia , ‘Candidatus Tisiphia’ (formerly Torix group Rickettsia ), Cardinium and Rhabdochlamydia . Using short-read genome sequencing data, we show that the endosymbionts are heterogeneously distributed among O. gibbosus populations and are frequently found co-infecting spider individuals. To study this intricate host–endosymbiont system on a genome-resolved level, we used long-read sequencing to reconstruct closed genomes of the Wolbachia , ‘Ca. Tisiphia’ and Cardinium endosymbionts. We provide insights into the ecology and evolution of the endosymbionts and shed light on the interactions with their spider host. We detected high quantities of transposable elements in all endosymbiont genomes and provide evidence that ancestors of the Cardinium , ‘Ca. Tisiphia’ and Wolbachia endosymbionts have co-infected the same hosts in the past. Our findings contribute to broadening our knowledge about endosymbionts infecting one of the largest animal phyla on Earth and show the usefulness of transposable elements as an evolutionary ‘contact-tracing’ tool.
-
-
-
The dynamics of the microbiome in Ixodidae are shaped by tick ontogeny and pathogens in Sarawak, Malaysian Borneo
Tick-borne diseases have recently been considered a potential emerging public health threat in Malaysia; however, fundamental studies into tick-borne pathogens and microbiome appear limited. In this study, six tick species (Ixodes granulatus, Haemaphysalis hystricis, Haemaphysalis shimoga, Dermacentor compactus, Dermacentor steini and Dermacentor atrosignatus) collected from two primary forests and an oil palm plantation in Sarawak, Malaysian Borneo, were used for microbiome analysis targeting bacterial 16S rDNA using next-generation sequencing (NGS). In addition, bacterial species were further characterized in conventional PCRs to identify potential pathogens. Sequences generated from NGS were first filtered with the Decontam package in R before subsequent microbial diversity analyses. Alpha and beta analyses revealed that the genus Dermacentor had the highest microbial diversity, and H. shimoga significantly differed in microbial composition from other tick species. Alpha and beta diversities were also significantly different between developmental stages of H. shimoga. Furthermore, we observed that some bacterial groups were significantly more abundant in certain tick species and developmental stages of H. shimoga. We tested the relative abundances using pairwise linear discriminant analysis effect size (LEfSe), which also revealed significant microbial composition differences between Borrelia -positive and Borrelia -negative I. granulatus ticks. Finally, pathogenic and potentially pathogenic bacteria circulating in different tick species, such as Rickettsia heilongjiangensis , Ehrlichia sp., Anaplasma sp. and Bartonella spp. were characterized by PCR and sequencing. Moreover, Coxiella and Francisella -like potential symbionts were identified from H. shimoga and D. steini, respectively. More studies are required to unravel the factors associated with the variations observed in this study.
-
-
-
Upper respiratory tract microbiota dynamics following COVID-19 in adults
To date, little is known about the effect of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for the coronavirus disease 2019 (COVID-19) pandemic, on the upper respiratory tract (URT) microbiota over time. To fill this knowledge gap, we used 16S ribosomal RNA gene sequencing to characterize the URT microbiota in 48 adults, including (1) 24 participants with mild-to-moderate COVID-19 who had serial mid-turbinate swabs collected up to 21 days after enrolment and (2) 24 asymptomatic, uninfected controls who had mid-turbinate swabs collected at enrolment only. To compare the URT microbiota between groups in a comprehensive manner, different types of statistical analyses that are frequently employed in microbial ecology were used, including ⍺-diversity, β-diversity and differential abundance analyses. Final statistical models included age, sex and the presence of at least one comorbidity as covariates. The median age of all participants was 34.00 (interquartile range=28.75–46.50) years. In comparison to samples from controls, those from participants with COVID-19 had a lower observed species index at day 21 (linear regression coefficient=−13.30; 95 % CI=−21.72 to −4.88; q=0.02). In addition, the Jaccard index was significantly different between samples from participants with COVID-19 and those from controls at all study time points (PERMANOVA q<0.05 for all comparisons). The abundance of three amplicon sequence variants (ASVs) (one Corynebacterium ASV, Frederiksenia canicola , and one Lactobacillus ASV) were decreased in samples from participants with COVID-19 at all seven study time points, whereas the abundance of one ASV (from the family Neisseriaceae ) was increased in samples from participants with COVID-19 at five (71.43 %) of the seven study time points. Our results suggest that mild-to-moderate COVID-19 can lead to alterations of the URT microbiota that persist for several weeks after the initial infection.
-
- Pathogens and Epidemiology
-
-
The use of representative community samples to assess SARS-CoV-2 lineage competition: Alpha outcompetes Beta and wild-type in England from January to March 2021
Oliver Eales, Andrew J. Page, Sonja N. Tang, Caroline E. Walters, Haowei Wang, David Haw, Alexander J. Trotter, Thanh Le Viet, Ebenezer Foster-Nyarko, Sophie Prosolek, Christina Atchison, Deborah Ashby, Graham Cooke, Wendy Barclay, Christl A. Donnelly, Justin O’Grady, Erik Volz, The COVID-19 Genomics UK (COG-UK) Consortium†, Ara Darzi, Helen Ward, Paul Elliott and Steven RileyGenomic surveillance for SARS-CoV-2 lineages informs our understanding of possible future changes in transmissibility and vaccine efficacy and will be a high priority for public health for the foreseeable future. However, small changes in the frequency of one lineage over another are often difficult to interpret because surveillance samples are obtained using a variety of methods all of which are known to contain biases. As a case study, using an approach which is largely free of biases, we here describe lineage dynamics and phylogenetic relationships of the Alpha and Beta variant in England during the first 3 months of 2021 using sequences obtained from a random community sample who provided a throat and nose swab for rt-PCR as part of the REal-time Assessment of Community Transmission-1 (REACT-1) study. Overall, diversity decreased during the first quarter of 2021, with the Alpha variant (first identified in Kent) becoming predominant, driven by a reproduction number 0.3 higher than for the prior wild-type. During January, positive samples were more likely to be Alpha in those aged 18 to 54 years old. Although individuals infected with the Alpha variant were no more likely to report one or more classic COVID-19 symptoms compared to those infected with wild-type, they were more likely to be antibody-positive 6 weeks after infection. Further, viral load was higher in those infected with the Alpha variant as measured by cycle threshold (Ct) values. The presence of infections with non-imported Beta variant (first identified in South Africa) during January, but not during February or March, suggests initial establishment in the community followed by fade-out. However, this occurred during a period of stringent social distancing. These results highlight how sequence data from representative community surveys such as REACT-1 can augment routine genomic surveillance during periods of lineage diversity.
-
-
-
How public health authorities can use pathogen genomics in health protection practice: a consensus-building Delphi study conducted in the United Kingdom
Pathogen sequencing guided understanding of SARS-CoV-2 evolution during the COVID-19 pandemic. Many health systems developed pathogen genomics services to monitor SARS-CoV-2. There are no agreed guidelines about how pathogen genomic information should be used in public health practice. We undertook a modified Delphi study in three rounds to develop expert consensus statements about how genomic information should be used. Our aim was to inform health protection policy, planning and practice. Participants were from organisations that produced or used pathogen genomics information in the United Kingdom. The first round posed questions derived from a rapid literature review. Responses informed statements for the subsequent rounds. Consensus was accepted when 70 % or more of the responses were strongly agree/agree, or 70 % were disagree/strongly disagree on the five-point Likert scale. Consensus was achieved in 26 (96 %) of 27 statements. We grouped the statements into six categories: monitoring the emergence of new variants; understanding the epidemiological context of genomic data; using genomic data in outbreak risk assessment and risk management; prioritising the use of limited sequencing capacity; sequencing service performance; and sequencing service capability. The expert consensus statements will help guide public health authorities and policymakers to integrate pathogen genomics in health protection practice.
-
-
-
Identification of genes influencing the evolution of Escherichia coli ST372 in dogs and humans
ST372 are widely reported as the major Escherichia coli sequence type in dogs globally. They are also a sporadic cause of extraintestinal infections in humans. Despite this, it is unknown whether ST372 strains from dogs and humans represent shared or distinct populations. Furthermore, little is known about genomic traits that might explain the prominence of ST372 in dogs or presence in humans. To address this, we applied a variety of bioinformatics analyses to a global collection of 407 ST372 E. coli whole-genome sequences to characterize their epidemiological features, population structure and associated accessory genomes. We confirm that dogs are the dominant host of ST372 and that clusters within the population structure exhibit distinctive O:H types. One phylogenetic cluster, ‘cluster M', comprised almost half of the sequences and showed the divergence of two human-restricted clades that carried different O:H types to the remainder of the cluster. We also present evidence supporting transmission between dogs and humans within different clusters of the phylogeny, including M. We show that multiple acquisitions of the pdu propanediol utilization operon have occurred in clusters dominated by isolates of canine source, possibly linked to diet, whereas loss of the pdu operon and acquisition of K antigen virulence genes characterize human-restricted lineages.
-
-
-
Alteration of a Shiga toxin-encoding phage associated with a change in toxin production level and disease severity in Escherichia coli
Among the nine clades of Shiga toxin (Stx)-producing Escherichia coli O157:H7, clade 8 is thought to be highly pathogenic, as it causes severe disease more often than other clades. Two subclades have been proposed, but there are conflicting reports on intersubclade differences in Stx2 levels, although Stx2 production is a risk factor for severe disease development. The global population structure of clade 8 has also yet to be fully elucidated. Here, we present genome analyses of a global clade 8 strain set (n=510), including 147 Japanese strains sequenced in this study. The complete genome sequences of 18 of the 147 strains were determined to perform detailed clade-wide genome analyses together with 17 publicly available closed genomes. Intraclade variations in Stx2 production level and disease severity were also re-evaluated within the phylogenetic context. Based on phylogenomic analysis, clade 8 was divided into four lineages corresponding to the previously proposed SNP genotypes (SGs): SG8_30, SG8_31A, SG8_31B and SG8_32. SG8_30 and the common ancestor of the other SGs were first separated, with SG8_31A and SG8_31B emerging from the latter and SG8_32 emerging from SG8_31B. Comparison of 35 closed genomes revealed the overall structure of chromosomes and pO157 virulence plasmids and the prophage contents to be well conserved. However, Stx2a phages exhibit notable genomic diversity, even though all are integrated into the argW locus, indicating that subtype changes in Stx2a phage occurred from the γ subtype to its variant (γ_v1) in SG8_31A and from γ to δ in SG8_31B and SG8_32 via replacement of parts or almost entire phage genomes, respectively. We further show that SG8_30 strains (all carrying γ Stx2a phages) produce significantly higher levels of Stx2 and cause severe disease more frequently than SG8_32 strains (all carrying δ Stx2a phages). Clear conclusions on SG8_31A and SG8_31B cannot be made due to the small number of strains available, but as SG8_31A (carrying γ_v1 Stx2a phages) contains strains that produce much more Stx2 than SG8_30 strains, attention should also be paid to this SG.
-
-
-
Whole-genome-based characterization of Campylobacter jejuni from human patients with gastroenteritis collected over an 18 year period reveals increasing prevalence of antimicrobial resistance
Campylobacteriosis is the most common cause of acute gastrointestinal bacterial infection in Europe, with most infections linked to the consumption of contaminated food. While previous studies found an increasing rate of antimicrobial resistance (AMR) in Campylobacter spp. over the past decades, the investigation of additional clinical isolates is likely to provide novel insights into the population structure and mechanisms of virulence and drug resistance of this important human pathogen. Therefore, we combined whole-genome sequencing and antimicrobial-susceptibility testing of 340 randomly selected Campylobacter jejuni isolates from humans with gastroenteritis, collected in Switzerland over an 18 year period. In our collection, the most common multilocus sequence types (STs) were ST-257 (n=44), ST-21 (n=36) and ST-50 (n=35); the most common clonal complexes (CCs) were CC-21 (n=102), CC-257 (n=49) and CC-48 (n=33). High heterogeneity was observed among STs, with the most abundant STs recurring over the entire study period, while others were observed only sporadically. Source attribution based on ST assigned more than half of the strains to the ‘generalist’ category (n=188), 25 % as ‘poultry specialist’ (n=83), and only a few to ‘ruminant specialist’ (n=11) or ‘wild bird’ origin (n=9). The isolates displayed an increased frequency of AMR from 2003 to 2020, with the highest rates of resistance observed for ciprofloxacin and nalidixic acid (49.8 %), followed by tetracycline (36.9 %). Quinolone-resistant isolates carried chromosomal gyrA mutations T86I (99.4 %) and T86A (0.6 %), whereas tetracycline-resistant isolates carried tet(O) (79.8 %) or mosaic tetO/32/O (20.2 %) genes. A novel chromosomal cassette carrying several resistance genes, including aph(3')-III, satA and aad(6), and flanked by insertion sequence elements was detected in one isolate. Collectively, our data revealed an increasing prevalence of resistance to quinolones and tetracycline in C. jejuni isolates from Swiss patients over time, linked to clonal expansion of gyrA mutants and acquisition of the tet(O) gene. Investigation of source attribution suggests that infections are most likely related to isolates from poultry or generalist backgrounds. These findings are relevant to guide future infection prevention and control strategies.
-
-
-
A systematic review of economic evaluations of whole-genome sequencing for the surveillance of bacterial pathogens
Whole-genome sequencing (WGS) has unparalleled ability to distinguish between bacteria, with many public health applications. The generation and analysis of WGS data require significant financial investment. We describe a systematic review summarizing economic analyses of genomic surveillance of bacterial pathogens, reviewing the evidence for economic viability. The protocol was registered on PROSPERO (CRD42021289030). Six databases were searched on 8 November 2021 using terms related to ‘WGS’, ‘population surveillance’ and ‘economic analysis’. Quality was assessed with the Drummond–Jefferson checklist. Following data extraction, a narrative synthesis approach was taken. Six hundred and eighty-one articles were identified, of which 49 proceeded to full-text screening, with 9 selected for inclusion. All had been published since 2019. Heterogeneity was high. Five studies assessed WGS for hospital surveillance and four analysed foodborne pathogens. Four were cost–benefit analyses, one was a cost–utility analysis, one was a cost-effectiveness analysis, one was a combined cost-effectiveness and cost–utility analysis, one combined cost-effectiveness and cost–benefit analyses and one was a partial analysis. All studies supported the use of WGS as a surveillance tool on economic grounds. The available evidence supports the use of WGS for pathogen surveillance but is limited by marked heterogeneity. Further work should include analysis relevant to low- and middle-income countries and should use real-world effectiveness data.
-
-
-
Distribution and origins of Mycobacterium tuberculosis L4 in Southeast Asia
Molecular and genomic studies have revealed that Mycobacterium tuberculosis Lineage 4 (L4, Euro-American lineage) emerged in Europe before becoming distributed around the globe by trade routes, colonial migration and other historical connections. Although L4 accounts for tens or hundreds of thousands of tuberculosis (TB) cases in multiple Southeast Asian countries, phylogeographical studies have either focused on a single country or just included Southeast Asia as part of a global analysis. Therefore, we interrogated public genomic data to investigate the historical patterns underlying the distribution of L4 in Southeast Asia and surrounding countries. We downloaded 6037 genomes associated with 29 published studies, focusing on global analyses of L4 and Asian studies of M. tuberculosis . We identified 2256 L4 genomes including 968 from Asia. We show that 81 % of L4 in Thailand, 51 % of L4 in Vietnam and 9 % of L4 in Indonesia belong to sub-lineages of L4 that are rarely seen outside East and Southeast Asia (L4.2.2, L4.4.2 and L4.5). These sub-lineages have spread between East and Southeast Asian countries, with no recent European ancestor. Although there is considerable uncertainty about the exact direction and order of intra-Asian M. tuberculosis dispersal, due to differing sampling frames between countries, our analysis suggests that China may be the intermediate location between Europe and Southeast Asia for two of the three predominantly East and Southeast Asian L4 sub-lineages (L4.2.2 and L4.5). This new perspective on L4 in Southeast Asia raises the possibility of investigating host population-specific evolution and highlights the need for more structured sampling from Southeast Asian countries to provide more certainty of the historical and current routes of dispersal.
-
-
-
Highly conserved composite transposon harbouring aerobactin iuc3 in Klebsiella pneumoniae from pigs
Klebsiella pneumoniae is an important opportunistic pathogen associated with severe invasive disease in humans. Hypervirulent K. pneumoniae , which are K. pneumoniae with several acquired virulence determinants such as the siderophore aerobactin and others, are more prominent in countries in South and South-East Asia compared to European countries. This Klebsiella pathotype is capable of causing liver abscesses in immunocompetent persons in the community. K. pneumoniae has not been extensively studied in non-human niches. In the present study, K. pneumoniae isolated from caecal samples (n=299) from healthy fattening pigs in Norway were characterized with regard to population structure and virulence determinants. These data were compared to data from a previous study on K. pneumoniae from healthy pigs in Thailand. Lastly, an in-depth plasmid study on K. pneumoniae with aerobactin was performed. Culturing and whole-genome sequencing was applied to detect, confirm and characterize K. pneumoniae isolates. Phylogenetic analysis described the evolutionary relationship and diversity of the isolates, while virulence determinants and sequence types were detected with Kleborate. Long-read sequencing was applied to obtain the complete sequence of virulence plasmids harbouring aerobactin. A total of 48.8 % of the investigated Norwegian pig caecal samples (n=299) were positive for K. pneumoniae . Acquired virulence determinants were detected in 72.6 % of the isolates, the most prominent being aerobactin (69.2 %), all of which were iuc3. In contrast, only 4.6 % of the isolates from Thailand harboured aerobactin. The aerobactin operon was located on potentially conjugative IncFIBK/FIIK plasmids of varying sizes in isolates from both countries. A putative, highly conserved composite transposon with a mean length of 16.2 kb flanked by truncated IS3-family IS407-group insertion sequences was detected on these plasmids, harbouring the aerobactin operon as well as several genes that may confer increased fitness in mammalian hosts. This putative composite transposon was also detected in plasmids harboured by K. pneumoniae from several countries and sources, such as human clinical samples. The high occurrence of K. pneumoniae harbouring aerobactin in Norwegian pigs, taken together with international data, suggest that pigs are a reservoir for K. pneumoniae with iuc3. Truncation of the flanking ISKpn78-element suggest that the putative composite transposon has been permanently integrated into the plasmid, and that it is no longer mobilizable.
-
- Short Communications
-
- Functional Genomics and Microbe–Niche Interactions
-
-
Laboratory strains of Escherichia coli K-12: things are seldom what they seem
More LessEscherichia coli K-12 was originally isolated 100 years ago and since then it has become an invaluable model organism and a cornerstone of molecular biology research. However, despite its pedigree, since its initial isolation E. coli K-12 has been repeatedly cultured, passaged and mutagenized, resulting in an organism that carries many genetic changes. To understand more about this important model organism, we have sequenced the genomes of two ancestral K-12 strains, WG1 and EMG2, considered to be the progenitors of many key laboratory strains. Our analysis confirms that these strains still carry genetic elements such as bacteriophage lambda (λ) and the F plasmid, but also indicates that they have undergone extensive laboratory-based evolution. Thus, scrutinizing the genomes of ancestral E. coli K-12 strains leads us to examine whether E. coli K-12 is a sufficiently robust model organism for 21st century microbiology.
-
- Pathogens and Epidemiology
-
-
Ceftazidime–avibactam resistance in Klebsiella pneumoniae sequence type 37: a decade of persistence and concealed evolution
The first reports of carbapenem-resistant Enterobacterales in our hospital date back to 2006. In that period, few ertapenem-resistant but meropenem-susceptible Klebsiella pneumoniae isolates belonging to sequence type (ST) 37 were retrieved from clinical samples. These strains produced the CTX-M-15 extended spectrum β-lactamase, OmpK35 was depleted due to a nonsense mutation, and a novel OmpK36 variant was identified. Yet, starting from 2010, Klebsiella pneumoniae carbapenemase (KPC)-producing ST512 isolates started prevailing and ST37 vanished from sight. Since 2018 the clinical use of the combination of ceftazidime–avibactam (CZA) has been introduced in clinical practice for the treatment of bacteria producing serine-β-lactamases, but KPC-producing, CZA-resistant K. pneumoniae are emerging. In 2021, four CZA-resistant ST37 isolates producing KPC variants were isolated from the same number of patients. blaKPC gene cloning in Escherichia coli was used to define the role of those KPC variants on CZA resistance, and whole genome sequencing was performed on these isolates and on three ST37 historical isolates from 2011. CZA resistance was due to mutations in the blaKPC genes carried on related pKpQIL-type plasmids, and three variants of the KPC enzyme have been identified in the four ST37 strains. The four ST37 isolates were closely related to each other and to the historical isolates, suggesting that ST37 survived without notice in our hospital for 10 years, waiting to re-emerge as a CZA-resistant K. pneumoniae clone. The ancestor of these contemporary isolates derives from ST37 wild-type porin strains, with no other mutations in chromosomal genes involved in conferring antibiotic resistance (parC, gyrA, ramR, mgrB, pmrB).
-
-
-
Genomic sentinel surveillance: Salmonella Paratyphi B outbreak in travellers coinciding with a mass gathering in Iraq
More LessSalmonella Paratyphi B infections in England are the least common imported typhoidal infection but can still cause invasive disease. Sentinel surveillance at the reference laboratory detected an outbreak from Iraq due to reported travel history, enabling enhanced PCR testing for a quick diagnosis.
-
Most Read This Month
