1887

Abstract

is a nosocomial pathogen that has emerged as a global threat because of high levels of resistance to many antibiotics, particularly those considered to be last-resort antibiotics, such as carbapenems. Although alterations in the efflux pump and outer membrane proteins can cause carbapenem resistance, the main mechanism is the acquisition of carbapenem-hydrolyzing oxacillinase-encoding genes. Of these, is by far the most widespread in most countries, while and appear to be dominant in specific regions. Historically, much of the global spread of carbapenem resistance has been due to the dissemination of two major clones, known as global clones 1 and 2, although new lineages are now common in some parts of the world. The analysis of all publicly available genome sequences performed here indicates that ST2, ST1, ST79 and ST25 account for over 71 % of all genomes sequenced to date, with ST2 by far the most dominant type and the most widespread carbapenem resistance determinant globally, regardless of clonal type. Whilst this highlights the global spread of ST1 and ST2, and the dominance of in both clones, it could also be a result of preferential selection of carbapenem-resistant strains, which mainly belong to the two major clones. Furthermore, ~70 % of the sequenced strains have been isolated from five countries, namely the USA, PR China, Australia, Thailand and Pakistan, with only a limited number from other countries. These genomes are a vital resource, but it is currently difficult to draw an accurate global picture of this important superbug, highlighting the need for more comprehensive genome sequence data and genomic analysis.

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000306
2019-10-10
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/mgen/10.1099/mgen.0.000306/mgen000306.html?itemId=/content/journal/mgen/10.1099/mgen.0.000306&mimeType=html&fmt=ahah

References

  1. Watkins RR, Bonomo RA. Overview: global and local impact of antibiotic resistance. Infect Dis Clin North Am 2016;30:313–322 [CrossRef]
    [Google Scholar]
  2. Rice LB. Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE. J Infect Dis 2008;197:1079–1081 [CrossRef]
    [Google Scholar]
  3. Towner KJ. Clinical importance and antibiotic resistance of Acinetobacter spp. Proceedings of a symposium held on 4-5 November 1996 at Eilat, Israel. J Med Microbiol 1997;46:721–746 [CrossRef]
    [Google Scholar]
  4. Bergogne-Bérézin E, Towner KJ. Acinetobacter spp. as nosocomial pathogens: microbiological, clinical, and epidemiological features. Clin Microbiol Rev 1996;9:148–165 [CrossRef]
    [Google Scholar]
  5. Antunes LCS, Visca P, Towner KJ. Acinetobacter baumannii: evolution of a global pathogen. Pathog Dis 2014;71:292–301 [CrossRef]
    [Google Scholar]
  6. Cerqueira GM, Peleg AY. Insights into Acinetobacter baumannii pathogenicity. IUBMB Life 2011;63:1055–1060 [CrossRef]
    [Google Scholar]
  7. Devaud M, Kayser FH, Bächi B. Transposon-mediated multiple antibiotic resistance in Acinetobacter strains. Antimicrob Agents Chemother 1982;22:323–329 [CrossRef]
    [Google Scholar]
  8. Holt K, Kenyon JJ, Hamidian M, Schultz MB, Pickard DJ et al. Five decades of genome evolution in the globally distributed, extensively antibiotic-resistant Acinetobacter baumannii global clone 1. Microb Genom 2016;2:e000052 [CrossRef]
    [Google Scholar]
  9. Adams MD, Goglin K, Molyneaux N, Hujer KM, Lavender H et al. Comparative genome sequence analysis of multidrug-resistant Acinetobacter baumannii. J Bacteriol 2008;190:8053–8064 [CrossRef]
    [Google Scholar]
  10. Doi Y, Murray GL, Peleg AY. Acinetobacter baumannii: evolution of antimicrobial resistance-treatment options. Semin Respir Crit Care Med 2015;36:85–98 [CrossRef]
    [Google Scholar]
  11. Nigro SJ, Hall RM. Tn6167, an antibiotic resistance island in an Australian carbapenem-resistant Acinetobacter baumannii GC2, ST92 isolate. J Antimicrob Chemother 2012;67:1342–1346 [CrossRef]
    [Google Scholar]
  12. Visca P, Seifert H, Towner KJ. Acinetobacter infection--an emerging threat to human health. IUBMB Life 2011;63:1048–1054 [CrossRef]
    [Google Scholar]
  13. WHO Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. World Health Organisation 2017
    [Google Scholar]
  14. Bush K, Jacoby GA. Updated functional classification of beta-lactamases. Antimicrob Agents Chemother 2010;54:969–976 [CrossRef]
    [Google Scholar]
  15. Codjoe F, Donkor E. Carbapenem resistance: a review. Med Sci 2017;6:1 [CrossRef]
    [Google Scholar]
  16. Adams MD, Chan ER, Molyneaux ND, Bonomo RA. Genomewide analysis of divergence of antibiotic resistance determinants in closely related isolates of Acinetobacter baumannii. Antimicrob Agents Chemother 2010;54:3569–3577 [CrossRef]
    [Google Scholar]
  17. Perez F, Ponce-Terashima R, Adams MD, Bonomo RA. Are we closing in on an "elusive enemy"? The current status of our battle with Acinetobacter baumannii. Virulence 2011;2:86–90 [CrossRef]
    [Google Scholar]
  18. Hamidian M, Hawkey J, Wick R, Holt KE, Hall RM. Evolution of a clade of Acinetobacter baumannii global clone 1, lineage 1 via acquisition of carbapenem- and aminoglycoside-resistance genes and dispersion of ISAba1. Microb Genom 2019;5:0.000242 [CrossRef]
    [Google Scholar]
  19. Afzal-Shah M, Woodford N, Livermore DM. Characterization of OXA-25, OXA-26, and OXA-27, molecular class D beta-lactamases associated with carbapenem resistance in clinical isolates of Acinetobacter baumannii. Antimicrob Agents Chemother 2001;45:583–588 [CrossRef]
    [Google Scholar]
  20. Peleg AY, Paterson DL. Multidrug-resistant Acinetobacter: a threat to the antibiotic era. Intern Med J 2006;36:479–482 [CrossRef]
    [Google Scholar]
  21. Peleg AY, Seifert H, Paterson DL. Acinetobacter baumannii: emergence of a successful pathogen. Clin Microbiol Rev 2008;21:538–582 [CrossRef]
    [Google Scholar]
  22. Zarrilli R, Crispino M, Bagattini M, Barretta E, Di Popolo A et al. Molecular epidemiology of sequential outbreaks of Acinetobacter baumannii in an intensive care unit shows the emergence of carbapenem resistance. J Clin Microbiol 2004;42:946–953 [CrossRef]
    [Google Scholar]
  23. van den Broek PJ, Arends J, Bernards AT, De Brauwer E, Mascini EM et al. Epidemiology of multiple Acinetobacter outbreaks in the Netherlands during the period 1999-2001. Clin Microbiol Infect 2006;12:837–843 [CrossRef]
    [Google Scholar]
  24. Centers for Disease Control and Prevention (CDC) Acinetobacter baumannii infections among patients at military medical facilities treating injured U.S. service members, 2002-2004. MMWR Morb Mortal Wkly Rep 2004;53:1063–1066
    [Google Scholar]
  25. Calhoun JH, Murray CK, Manring MM. Multidrug-Resistant organisms in military wounds from Iraq and Afghanistan. Clin Orthop Relat Res 2008;466:1356–1362 [CrossRef]
    [Google Scholar]
  26. Griffith ME, Lazarus DR, Mann PB, Boger JA, Hospenthal DR et al. Acinetobacter skin carriage among US army soldiers deployed in Iraq. Infect Control Hosp Epidemiol 2007;28:720–722 [CrossRef]
    [Google Scholar]
  27. Hujer KM, Hujer AM, Hulten EA, Bajaksouzian S, Adams JM et al. Analysis of antibiotic resistance genes in multidrug-resistant Acinetobacter sp. isolates from military and civilian patients treated at the walter reed army medical center. Antimicrob Agents Chemother 2006;50:4114–4123 [CrossRef]
    [Google Scholar]
  28. Scott P, Deye G, Srinivasan A, Murray C, Moran K et al. An outbreak of multidrug-resistant Acinetobacter baumannii-calcoaceticus complex infection in the US military health care system associated with military operations in Iraq. Clin Infect Dis 2007;44:1577–1584 [CrossRef]
    [Google Scholar]
  29. Davis KA, Moran KA, McAllister CK, Gray PJ. Multidrug-Resistant Acinetobacter extremity infections in soldiers. Emerg Infect Dis 2005;11:1218–1224 [CrossRef]
    [Google Scholar]
  30. Lolans K, Rice TW, Munoz-Price LS, Quinn JP. Multicity outbreak of carbapenem-resistant Acinetobacter baumannii isolates producing the carbapenemase OXA-40. Antimicrob Agents Chemother 2006;50:2941–2945 [CrossRef]
    [Google Scholar]
  31. Dy ME, Nord JA, LaBombardi VJ, Kislak JW. The emergence of resistant strains of Acinetobacter baumannii: clinical and infection control implications. Infect Control Hosp Epidemiol 1999;20:565–567 [CrossRef]
    [Google Scholar]
  32. Go ES, Urban C, Burns J, Kreiswirth B, Eisner W et al. Clinical and molecular epidemiology of Acinetobacter infections sensitive only to polymyxin B and sulbactam. Lancet 1994;344:1329–1332 [CrossRef]
    [Google Scholar]
  33. Boyd DA, Mataseje LF, Pelude L, Mitchell R, Bryce E et al. Results from the Canadian nosocomial infection surveillance program for detection of carbapenemase-producing Acinetobacter spp. in Canadian hospitals, 2010-16. J Antimicrob Chemother 2019;74:315–320 [CrossRef]
    [Google Scholar]
  34. Villegas MV, Kattan JN, Correa A, Lolans K, Guzman AM et al. Dissemination of Acinetobacter baumannii clones with OXA-23 carbapenemase in Colombian hospitals. Antimicrob Agents Chemother 2007;51:2001–2004 [CrossRef]
    [Google Scholar]
  35. da Silva KE, Maciel WG, Croda J, Cayô R, Ramos AC et al. A high mortality rate associated with multidrug-resistant Acinetobacter baumannii ST79 and ST25 carrying OXA-23 in a Brazilian intensive care unit. PLoS One 2018;13:e0209367 [CrossRef]
    [Google Scholar]
  36. Tavares LCB, de Vasconcellos FM, de Sousa WV, Rocchetti TT, Mondelli AL et al. Emergence and persistence of high-risk clones among MDR and XDR A. baumannii at a Brazilian Teaching Hospital. Front Microbiol 2018;9:2898 [CrossRef]
    [Google Scholar]
  37. Merkier AK, Catalano M, Ramírez MS, Quiroga C, Orman B et al. Polyclonal spread of bla OXA-23 and bla OXA-58 in Acinetobacter baumannii isolates from Argentina. J Infect Dev Ctries 2008;2:235–240
    [Google Scholar]
  38. Opazo-Capurro A, San Martín I, Quezada-Aguiluz M, Morales-León F, Domínguez-Yévenes M et al. Evolutionary dynamics of carbapenem-resistant Acinetobacter baumannii circulating in Chilean hospitals. Infect Genet Evol 2019;73:93–97 [CrossRef]
    [Google Scholar]
  39. Sevillano E, Fernández E, Bustamante Z, Zabalaga S, Rosales I et al. Emergence and clonal dissemination of carbapenem-hydrolysing OXA-58-producing Acinetobacter baumannii isolates in bolivia. J Med Microbiol 2012;61:80–84 [CrossRef]
    [Google Scholar]
  40. Schulte B, Goerke C, Weyrich P, Gröbner S, Bahrs C et al. Clonal spread of meropenem-resistant Acinetobacter baumannii strains in hospitals in the Mediterranean region and transmission to south-west Germany. J Hosp Infect 2005;61:356–357 [CrossRef]
    [Google Scholar]
  41. Coelho JM, Turton JF, Kaufmann ME, Glover J, Woodford N et al. Occurrence of carbapenem-resistant Acinetobacter baumannii clones at multiple hospitals in London and Southeast England. J Clin Microbiol 2006;44:3623–3627 [CrossRef]
    [Google Scholar]
  42. Wybo I, Blommaert L, De Beer T, Soetens O, De Regt J et al. Outbreak of multidrug-resistant Acinetobacter baumannii in a Belgian university hospital after transfer of patients from Greece. J Hosp Infect 2007;67:374–380 [CrossRef]
    [Google Scholar]
  43. Nemec A, Krízová L, Maixnerová M, Diancourt L, van der Reijden TJK et al. Emergence of carbapenem resistance in Acinetobacter baumannii in the Czech Republic is associated with the spread of multidrug-resistant strains of European clone II. J Antimicrob Chemother 2008;62:484–489 [CrossRef]
    [Google Scholar]
  44. Corbella X, Montero A, Pujol M, Domínguez MA, Ayats J et al. Emergence and rapid spread of carbapenem resistance during a large and sustained hospital outbreak of multiresistant Acinetobacter baumannii. J Clin Microbiol 2000;38:4086–4095
    [Google Scholar]
  45. Da Silva G, Domingues S. Insights on the horizontal gene transfer of carbapenemase determinants in the opportunistic pathogen Acinetobacter baumannii. Microorganisms 2016;4:29 [CrossRef]
    [Google Scholar]
  46. Jeannot K, Diancourt L, Vaux S, Thouverez M, Ribeiro A et al. Molecular epidemiology of carbapenem non-susceptible Acinetobacter baumannii in France. PLoS One 2014;9:e115452 [CrossRef]
    [Google Scholar]
  47. Stoeva T, Higgins PG, Bojkova K, Seifert H. Clonal spread of carbapenem-resistant OXA-23-positive Acinetobacter baumannii in a Bulgarian university hospital. Clin Microbiol Infect 2008;14:723–727 [CrossRef]
    [Google Scholar]
  48. Gogou V, Pournaras S, Giannouli M, Voulgari E, Piperaki ET et al. Evolution of multidrug-resistant Acinetobacter baumannii clonal lineages: a 10 year study in Greece (2000-09). J Antimicrob Chemother 2011;66:2767–2772 [CrossRef]
    [Google Scholar]
  49. El Bannah AMS, Nawar NN, Hassan RMM, Salem STB. Molecular epidemiology of carbapenem-resistant Acinetobacter baumannii in a tertiary care hospital in Egypt: clonal spread of blaOXA-23. Microb Drug Resist 2018;24:269–277 [CrossRef]
    [Google Scholar]
  50. Cheikh HB, Domingues S, Silveira E, Kadri Y, Rosário N et al. Molecular characterization of carbapenemases of clinical Acinetobacter baumannii-calcoaceticus complex isolates from a University Hospital in Tunisia. 3 Biotech 2018;8:297 [CrossRef]
    [Google Scholar]
  51. Marais E, de Jong G, Ferraz V, Maloba B, Dusé AG. Interhospital transfer of pan-resistant Acinetobacter strains in johannesburg, South Africa. Am J Infect Control 2004;32:278–281 [CrossRef]
    [Google Scholar]
  52. Kumburu HH, Sonda T, van Zwetselaar M, Leekitcharoenphon P, Lukjancenko O et al. Using WGS to identify antibiotic resistance genes and predict antimicrobial resistance phenotypes in MDR Acinetobacter baumannii in Tanzania. J Antimicrob Chemother 2019;74:1484–1493 [CrossRef]
    [Google Scholar]
  53. Nasiri MJ, Zamani S, Fardsanei F, Arshadi M, Bigverdi R et al. Prevalence and mechanisms of carbapenem resistance in Acinetobacter baumannii: a comprehensive systematic review of cross-sectional studies from Iran. Microb Drug Resist 2019;25:2018.0435
    [Google Scholar]
  54. Mugnier P, Poirel L, Pitout M, Nordmann P. Carbapenem-resistant and OXA-23-producing Acinetobacter baumannii isolates in the united arab emirates. Clin Microbiol Infect 2008;14:879–882 [CrossRef]
    [Google Scholar]
  55. Zowawi HM, Sartor AL, Sidjabat HE, Balkhy HH, Walsh TR et al. Molecular epidemiology of carbapenem-resistant Acinetobacter baumannii isolates in the Gulf cooperation Council states: dominance of OXA-23-type producers. J Clin Microbiol 2015;53:896–903 [CrossRef]
    [Google Scholar]
  56. Ahmed SS, Alp E, Ulu-Kilic A, Dinc G, Aktas Z et al. Spread of carbapenem-resistant international clones of Acinetobacter baumannii in turkey and azerbaijan: a collaborative study. Eur J Clin Microbiol Infect Dis 2016;35:1463–1468 [CrossRef]
    [Google Scholar]
  57. Marchaim D, Navon-Venezia S, Leavitt A, Chmelnitsky I, Schwaber MJ et al. Molecular and epidemiologic study of polyclonal outbreaks of multidrug-resistant Acinetobacter baumannii infection in an Israeli Hospital. Infect Control Hosp Epidemiol 2007;28:945–950 [CrossRef]
    [Google Scholar]
  58. Al Atrouni A, Hamze M, Jisr T, Lemarié C, Eveillard M et al. Wide spread of OXA-23-producing carbapenem-resistant Acinetobacter baumannii belonging to clonal complex II in different hospitals in Lebanon. Int J Infect Dis 2016;52:29–36 [CrossRef]
    [Google Scholar]
  59. Hasan B, Perveen K, Olsen B, Zahra R. Emergence of carbapenem-resistant Acinetobacter baumannii in hospitals in Pakistan. J Med Microbiol 2014;63:50–55 [CrossRef]
    [Google Scholar]
  60. Ng DHL, Marimuthu K, Lee JJ, Khong WX, Ng OT et al. Environmental colonization and onward clonal transmission of carbapenem-resistant Acinetobacter baumannii (CRAB) in a medical intensive care unit: the case for environmental hygiene. Antimicrob Resist Infect Control 2018;7:51 [CrossRef]
    [Google Scholar]
  61. Tan TY, Poh K, Ng SY. Molecular typing of imipenem-resistant Acinetobacter baumannii-calcoaceticus complex in a Singapore Hospital where carbapenem resistance is endemic. Infect Control Hosp Epidemiol 2007;28:941–944 [CrossRef]
    [Google Scholar]
  62. Gurung M, Rho JS, Lee YC, Kim HS, Moon SY et al. Emergence and spread of carbapenem-resistant Acinetobacter baumannii sequence type 191 in a Korean hospital. Infect Genet Evol 2013;19:219–222 [CrossRef]
    [Google Scholar]
  63. Jeon H, Kim S, Kim MH, Kim SY, Nam D et al. Molecular epidemiology of carbapenem-resistant Acinetobacter baumannii isolates from a Korean hospital that carry blaOXA-23. Infect Genet Evol 2018;58:232–236 [CrossRef]
    [Google Scholar]
  64. Lee Y, Kim YR, Kim J, Park YJ, Song W et al. Increasing prevalence of bla OXA-23-carrying Acinetobacter baumannii and the emergence of bla OXA-182-carrying Acinetobacter nosocomialis in Korea. Diagn Microbiol Infect Dis 2013;77:160–163 [CrossRef]
    [Google Scholar]
  65. Kuo SC, Huang WC, Huang TW, Wang HY, Lai JF et al. Molecular epidemiology of emerging blaOXA-23-Like and blaOXA-24-Like- carrying Acinetobacter baumannii in Taiwan. Antimicrob Agents Chemother 2018;62:e01215–01217 [CrossRef]
    [Google Scholar]
  66. Wang TH, Leu YS, Wang NY, Liu CP, Yan TR. Prevalence of different carbapenemase genes among carbapenem-resistant Acinetobacter baumannii blood isolates in Taiwan. Antimicrob Resist Infect Control 2018;7:123 [CrossRef]
    [Google Scholar]
  67. Fu Y, Zhou J, Zhou H, Yang Q, Wei Z et al. Wide dissemination of OXA-23-producing carbapenem-resistant Acinetobacter baumannii clonal complex 22 in multiple cities of China. J Antimicrob Chemother 2010;65:644–650 [CrossRef]
    [Google Scholar]
  68. Alshahni MM, Asahara M, Kawakami S, Fujisaki R, Matsunaga N et al. Genotyping of Acinetobacter baumannii strains isolated at a Japanese hospital over five years using targeted next-generation sequencing. J Infect Chemother 2015;21:512–515 [CrossRef]
    [Google Scholar]
  69. Teerawattanapong N, Panich P, Kulpokin D, Na Ranong S, Kongpakwattana K et al. A systematic review of the burden of multidrug-resistant healthcare-associated infections among intensive care unit patients in Southeast Asia: the rise of multidrug-resistant Acinetobacter baumannii. Infect Control Hosp Epidemiol 2018;39:525–533 [CrossRef]
    [Google Scholar]
  70. Hamidian M, Hall RM. AbaR4 replaces AbaR3 in a carbapenem-resistant Acinetobacter baumannii isolate belonging to global clone 1 from an Australian hospital. J Antimicrob Chemother 2011;66:2484–2491 [CrossRef]
    [Google Scholar]
  71. Hamidian M, Kenyon JJ, Holt KE, Pickard D, Hall RM. A conjugative plasmid carrying the carbapenem resistance gene bla OXA-23 in AbaR4 in an extensively resistant GC1 Acinetobacter baumannii isolate. J Antimicrob Chemother 2014;69:2625–2628 [CrossRef]
    [Google Scholar]
  72. Peleg AY, Franklin C, Bell JM, Spelman DW. Emergence of carbapenem resistance in Acinetobacter baumannii recovered from blood cultures in Australia. Infect Control Hosp Epidemiol 2006;27:759–761 [CrossRef]
    [Google Scholar]
  73. Towner KJ, Levi K, Vlassiadi M. Genetic diversity of carbapenem-resistant isolates of Acinetobacter baumannii in Europe. Clin Microbiol Infect 2008;14:161–167 [CrossRef]
    [Google Scholar]
  74. Dijkshoorn L, Nemec A, Seifert H. An increasing threat in hospitals: multidrug-resistant Acinetobacter baumannii. Nat Rev Microbiol 2007;5:939–951 [CrossRef]
    [Google Scholar]
  75. Zarrilli R, Pournaras S, Giannouli M, Tsakris A. Global evolution of multidrug-resistant Acinetobacter baumannii clonal lineages. Int J Antimicrob Agents 2013;41:11–19 [CrossRef]
    [Google Scholar]
  76. Saranathan R, Vasanth V, Vasanth T, Shabareesh PRV, Shashikala P et al. Emergence of carbapenem non-susceptible multidrug resistant Acinetobacter baumannii strains of clonal complexes 103(B) and 92(B) harboring OXA-type carbapenemases and metallo-beta-lactamases in Southern India. Microbiol Immunol 2015;59:277–284 [CrossRef]
    [Google Scholar]
  77. Pournaras S, Dafopoulou K, Del Franco M, Zarkotou O, Dimitroulia E et al. Predominance of international clone 2 OXA-23-producing- Acinetobacter baumannii clinical isolates in Greece, 2015: results of a nationwide study. Int J Antimicrob Agents 2017;49:749–753 [CrossRef]
    [Google Scholar]
  78. Post V, White PA, Hall RM. Evolution of AbaR-type genomic resistance islands in multiply antibiotic-resistant Acinetobacter baumannii. J Antimicrob Chemother 2010;65:1162–1170 [CrossRef]
    [Google Scholar]
  79. Peymani A, Higgins PG, Nahaei M-R, Farajnia S, Seifert H. Characterisation and clonal dissemination of OXA-23-producing Acinetobacter baumannii in Tabriz, northwest Iran. Int J Antimicrob Agents 2012;39:526–528 [CrossRef]
    [Google Scholar]
  80. Milan A, Furlanis L, Cian F, Bressan R, Luzzati R et al. Epidemic dissemination of a carbapenem-resistant Acinetobacter baumannii clone carrying armA two years after its first isolation in an italian hospital. Microb Drug Resist 2016;22:668–674 [CrossRef]
    [Google Scholar]
  81. Dortet L, Bonnin RA, Girlich D, Imanci D, Bernabeu S et al. Whole-genome sequence of a european clone II and OXA-72-producing Acinetobacter baumannii strain from serbia. Genome Announc 2015;3:e01390–15 [CrossRef]
    [Google Scholar]
  82. Brahmi S, Touati A, Cadière A, Djahmi N, Pantel A et al. First description of two sequence type 2 Acinetobacter baumannii isolates carrying OXA-23 carbapenemase in pagellus acarne fished from the mediterranean sea near bejaia, algeria. Antimicrob Agents Chemother 2016;60:2513–2515 [CrossRef]
    [Google Scholar]
  83. Bakour S, Olaitan AO, Ammari H, Touati A, Saoudi S et al. Emergence of colistin- and carbapenem-resistant Acinetobacter baumannii ST2 clinical isolate in algeria: first case report. Microb Drug Resist 2015;21:279–285 [CrossRef]
    [Google Scholar]
  84. Al-Sultan AA, Evans BA, Aboulmagd E, Al-Qahtani AA, Bohol MFF et al. Dissemination of multiple carbapenem-resistant clones of Acinetobacter baumannii in the Eastern District of Saudi Arabia. Front Microbiol 2015;6:634 [CrossRef]
    [Google Scholar]
  85. Levy-Blitchtein S, Roca I, Plasencia-Rebata S, Vicente-Taboada W, Velásquez-Pomar J et al. Emergence and spread of carbapenem-resistant Acinetobacter baumannii international clones II and III in Lima, Peru. Emerg Microbes Infect 2018;7:1–9 [CrossRef]
    [Google Scholar]
  86. Correa A, Del Campo R, Escandón-Vargas K, Perenguez M, Rodríguez-Baños M et al. Distinct genetic diversity of carbapenem-resistant Acinetobacter baumannii from colombian hospitals. Microb Drug Resist 2018;24:48–54 [CrossRef]
    [Google Scholar]
  87. Kim DH, Choi JY, Kim HW, Kim SH, Chung DR et al. Spread of carbapenem-resistant Acinetobacter baumannii global clone 2 in Asia and AbaR-type resistance islands. Antimicrob Agents Chemother 2013;57:5239–5246 [CrossRef]
    [Google Scholar]
  88. Mathlouthi N, Ben Lamine Y, Somai R, Bouhalila-Besbes S, Bakour S et al. Incidence of OXA-23 and OXA-58 carbapenemases coexpressed in clinical isolates of Acinetobacter baumannii in tunisia. Microb Drug Resist 2018;24:136–141 [CrossRef]
    [Google Scholar]
  89. Nigro SJ, Post V, Hall RM. Aminoglycoside resistance in multiply antibiotic-resistant Acinetobacter baumannii belonging to global clone 2 from Australian hospitals. J Antimicrob Chemother 2011;66:1504–1509 [CrossRef]
    [Google Scholar]
  90. Post V, Hall RM. AbaR5, a large multiple-antibiotic resistance region found in Acinetobacter baumannii. Antimicrob Agents Chemother 2009;53:2667–2671 [CrossRef]
    [Google Scholar]
  91. Wright MS, Haft DH, Harkins DM, Perez F, Hujer KM et al. New insights into dissemination and variation of the health care-associated pathogen Acinetobacter baumannii from genomic analysis. mBio 2014;5:e00963–13 [CrossRef]
    [Google Scholar]
  92. Diancourt L, Passet V, Nemec A, Dijkshoorn L, Brisse S. The population structure of Acinetobacter baumannii: expanding multiresistant clones from an ancestral susceptible genetic pool. PLoS One 2010;5:e10034 [CrossRef]
    [Google Scholar]
  93. Ko KS. Antibiotic-resistant clones in gram-negative pathogens: presence of global clones in Korea. J Microbiol 2019;57:195–202 [CrossRef]
    [Google Scholar]
  94. Matsui M, Suzuki M, Suzuki M, Yatsuyanagi J, Watahiki M et al. Distribution and molecular characterization of Acinetobacter baumannii international clone II lineage in Japan. Antimicrob Agents Chemother 2018;62: [CrossRef]
    [Google Scholar]
  95. Giannouli M, Antunes LCS, Marchetti V, Triassi M, Visca P et al. Virulence-related traits of epidemic Acinetobacter baumannii strains belonging to the international clonal lineages I-III and to the emerging genotypes ST25 and ST78. BMC Infect Dis 2013;13:282 [CrossRef]
    [Google Scholar]
  96. Karah N, Giske CG, Sundsfjord A, Samuelsen Ørjan. A diversity of OXA-carbapenemases and class 1 integrons among carbapenem-resistant Acinetobacter baumannii clinical isolates from Sweden belonging to different international clonal lineages. Microb Drug Resist 2011;17:545–549 [CrossRef]
    [Google Scholar]
  97. Lee Y, Kim CK, Lee H, Jeong SH, Yong D et al. A novel insertion sequence, ISAba10, inserted into ISAba1 adjacent to the blaOXA-23 gene and disrupting the outer membrane protein gene carO in Acinetobacter baumannii. Antimicrob Agents Chemother 2011;55:361–363 [CrossRef]
    [Google Scholar]
  98. Mussi MA, Limansky AS, Relling V, Ravasi P, Arakaki A et al. Horizontal gene transfer and assortative recombination within the Acinetobacter baumannii clinical population provide genetic diversity at the single carO gene, encoding a major outer membrane protein channel. J Bacteriol 2011;193:4736–4748 [CrossRef]
    [Google Scholar]
  99. Marchand I, Damier-Piolle L, Courvalin P, Lambert T. Expression of the RND-type efflux pump AdeABC in Acinetobacter baumannii is regulated by the AdeRS two-component system. Antimicrob Agents Chemother 2004;48:3298–3304 [CrossRef]
    [Google Scholar]
  100. Coyne S, Courvalin P, Périchon B. Efflux-Mediated antibiotic resistance in Acinetobacter spp. Antimicrob Agents Chemother 2011;55:947–953 [CrossRef]
    [Google Scholar]
  101. Naas T, Nordmann P. OXA-type beta-lactamases. Curr Pharm Des 1999;5:865–879
    [Google Scholar]
  102. Ambler RP, Coulson AFW, Frère JM, Ghuysen JM, Joris B et al. A standard numbering scheme for the class A β -lactamases. Biochem J 1991;276:269–270 [CrossRef]
    [Google Scholar]
  103. Ambler RP. The structure of beta-lactamases. Philos Trans R Soc Lond B Biol Sci 1980;289:321–331 [CrossRef]
    [Google Scholar]
  104. Poirel L, Mansour W, Bouallegue O, Nordmann P. Carbapenem-resistant Acinetobacter baumannii isolates from Tunisia producing the OXA-58-like carbapenem-hydrolyzing oxacillinase OXA-97. Antimicrob Agents Chemother 2008;52:1613–1617 [CrossRef]
    [Google Scholar]
  105. Poirel L, Naas T, Nordmann P. Diversity, epidemiology, and genetics of class D beta-lactamases. Antimicrob Agents Chemother 2010;54:24–38 [CrossRef]
    [Google Scholar]
  106. Poirel L, Nordmann P. Carbapenem resistance in Acinetobacter baumannii: mechanisms and epidemiology. Clin Microbiol Infect 2006;12:826–836 [CrossRef]
    [Google Scholar]
  107. Bertini A, Poirel L, Bernabeu S, Fortini D, Villa L et al. Multicopy blaOXA-58 gene as a source of high-level resistance to carbapenems in Acinetobacter baumannii. Antimicrob Agents Chemother 2007;51:2324–2328 [CrossRef]
    [Google Scholar]
  108. Héritier C, Poirel L, Lambert T, Nordmann P. Contribution of acquired carbapenem-hydrolyzing oxacillinases to carbapenem resistance in Acinetobacter baumannii. Antimicrob Agents Chemother 2005;49:3198–3202 [CrossRef]
    [Google Scholar]
  109. Turton JF, Ward ME, Woodford N, Kaufmann ME, Pike R et al. The role of ISAba1 in expression of OXA carbapenemase genes in Acinetobacter baumannii. FEMS Microbiol Lett 2006;258:72–77 [CrossRef]
    [Google Scholar]
  110. Corvec S, Poirel L, Naas T, Drugeon H, Nordmann P. Genetics and expression of the carbapenem-hydrolyzing oxacillinase gene blaOXA-23 in Acinetobacter baumannii. Antimicrob Agents Chemother 2007;51:1530–1533 [CrossRef]
    [Google Scholar]
  111. Mugnier PD, Poirel L, Nordmann P. Functional analysis of insertion sequence ISAba1, responsible for genomic plasticity of Acinetobacter baumannii. J Bacteriol 2009;191:2414–2418 [CrossRef]
    [Google Scholar]
  112. Nigro SJ, Hall RM. Structure and context of Acinetobacter transposons carrying the oxa23 carbapenemase gene. J Antimicrob Chemother 2016;71:1135–1147 [CrossRef]
    [Google Scholar]
  113. Mugnier PD, Poirel L, Naas T, Nordmann P. Worldwide dissemination of the blaOXA-23 carbapenemase gene of Acinetobacter baumannii. Emerg Infect Dis 2010;16:35–40 [CrossRef]
    [Google Scholar]
  114. Héritier C, Poirel L, Fournier PE, Claverie JM, Raoult D et al. Characterization of the naturally occurring oxacillinase of Acinetobacter baumannii. Antimicrob Agents Chemother 2005;49:4174–4179 [CrossRef]
    [Google Scholar]
  115. Brown S, Amyes SGB. The sequences of seven class D beta-lactamases isolated from carbapenem-resistant Acinetobacter baumannii from four continents. Clin Microbiol Infect 2005;11:326–329 [CrossRef]
    [Google Scholar]
  116. Brown S, Amyes S. OXA (beta)-lactamases in Acinetobacter: the story so far. J Antimicrob Chemother 2006;57:1–3 [CrossRef]
    [Google Scholar]
  117. Evans BA, Hamouda A, Towner KJ, Amyes SGB. OXA-51-like beta-lactamases and their association with particular epidemic lineages of Acinetobacter baumannii. Clin Microbiol Infect 2008;14:268–275 [CrossRef]
    [Google Scholar]
  118. Nigro SJ, Hall RM. Does the intrinsic oxaAb (bla OXA-51-like) gene of Acinetobacter baumannii confer resistance to carbapenems when activated by ISAba1?. J Antimicrob Chemother 2018;73:3518–3520 [CrossRef]
    [Google Scholar]
  119. Paton R, Miles RS, Hood J, Amyes SG, Miles RS et al. Ari 1: beta-lactamase-mediated imipenem resistance in Acinetobacter baumannii. Int J Antimicrob Agents 1993;2:81–87 [CrossRef]
    [Google Scholar]
  120. Scaife W, Young HK, Paton RH, Amyes SG. Transferable imipenem-resistance in Acinetobacter species from a clinical source. J Antimicrob Chemother 1995;36:585–586 [CrossRef]
    [Google Scholar]
  121. Poirel L, Figueiredo S, Cattoir V, Carattoli A, Nordmann P. Acinetobacter radioresistens as a silent source of carbapenem resistance for Acinetobacter spp. Antimicrob Agents Chemother 2008;52:1252–1256 [CrossRef]
    [Google Scholar]
  122. Poirel L, Marqué S, Héritier C, Segonds C, Chabanon G et al. OXA-58, a novel class D beta-lactamase involved in resistance to carbapenems in Acinetobacter baumannii. Antimicrob Agents Chemother 2005;49:202–208 [CrossRef]
    [Google Scholar]
  123. Héritier C, Dubouix A, Poirel L, Marty N, Nordmann P. A nosocomial outbreak of Acinetobacter baumannii isolates expressing the carbapenem-hydrolysing oxacillinase OXA-58. J Antimicrob Chemother 2005;55:115–118 [CrossRef]
    [Google Scholar]
  124. Pailhoriès H, Kempf M, Belmonte O, Joly-Guillou ML, Eveillard M. First case of OXA-24-producing Acinetobacter baumannii in cattle from Reunion Island, France. Int J Antimicrob Agents 2016;48:763–764 [CrossRef]
    [Google Scholar]
  125. Sarı AN, Biçmen M, Gülay Z. The first report on the outbreak of OXA-24/40-like carbapenemase-producing Acinetobacter baumannii in turkey. Jpn J Infect Dis 2013;66:439–442 [CrossRef]
    [Google Scholar]
  126. Todorova B, Velinov T, Ivanov I, Dobreva E, Kantardjiev T. First detection of OXA-24 carbapenemase-producing Acinetobacter baumannii isolates in Bulgaria. World J Microbiol Biotechnol 2014;30:1427–1430 [CrossRef]
    [Google Scholar]
  127. Chen Y, Yang Y, Liu L, Qiu G, Han X et al. High prevalence and clonal dissemination of OXA-72-producing Acinetobacter baumannii in a Chinese hospital: a cross sectional study. BMC Infect Dis 2018;18:491 [CrossRef]
    [Google Scholar]
  128. Huang L, Sun L, Yan Y. Clonal spread of carbapenem resistant Acinetobacter baumannii ST92 in a Chinese Hospital during a 6-year period. J Microbiol 2013;51:113–117 [CrossRef]
    [Google Scholar]
  129. Evans BA, Amyes SG. Oxa beta-lactamases. Clin Microbiol Rev 2014;27:241–263
    [Google Scholar]
  130. Rodríguez CH, Nastro M, Famiglietti A. Carbapenemases in Acinetobacter baumannii. Review of their dissemination in Latin America. Revista Argentina de Microbiología 2018;50:327–333 [CrossRef]
    [Google Scholar]
  131. Nordmann P, Naas T, Poirel L. Global spread of carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis 2011;17:1791–1798 [CrossRef]
    [Google Scholar]
  132. Bontron S, Nordmann P, Poirel L. Transposition of Tn125 encoding the NDM-1 carbapenemase in Acinetobacter baumannii. Antimicrob Agents Chemother 2016;60:7245–7251 [CrossRef]
    [Google Scholar]
  133. Wang X, Zhang Z, Hao Q, Wu J, Xiao J et al. Complete Genome Sequence of Acinetobacter baumannii ZW85-1. Genome Announc 2014;23:e01083–13
    [Google Scholar]
  134. Zhang WJ, Lu Z, Schwarz S, Zhang RM, Wang XM et al. Complete sequence of the bla (NDM-1)-carrying plasmid pNDM-AB from Acinetobacter baumannii of food animal origin. J Antimicrob Chemother 2013;68:1681–1682 [CrossRef]
    [Google Scholar]
  135. Quainoo S, Coolen JPM, van Hijum S, Huynen MA, Melchers WJG et al. Whole-Genome sequencing of bacterial pathogens: the future of nosocomial outbreak analysis. Clin Microbiol Rev 2017;30:1015–1063 [CrossRef]
    [Google Scholar]
  136. Popovich KJ, Snitkin ES. Whole genome sequencing-implications for infection prevention and outbreak investigations. Curr Infect Dis Rep 2017;19:15 [CrossRef]
    [Google Scholar]
  137. Schürch AC, van Schaik W. Challenges and opportunities for whole-genome sequencing-based surveillance of antibiotic resistance. Ann N Y Acad Sci 2017;1388:108–120 [CrossRef]
    [Google Scholar]
  138. Smith MG, Gianoulis TA, Pukatzki S, Mekalanos JJ, Ornston LN et al. New insights into Acinetobacter baumannii pathogenesis revealed by high-density pyrosequencing and transposon mutagenesis. Genes Dev 2007;21:601–614 [CrossRef]
    [Google Scholar]
  139. Fournier P-E, Vallenet D, Barbe V, Audic S, Ogata H et al. Comparative genomics of multidrug resistance in Acinetobacter baumannii. PLoS Genet 2006;2:e7 [CrossRef]
    [Google Scholar]
  140. Iacono M, Villa L, Fortini D, Bordoni R, Imperi F et al. Whole-genome pyrosequencing of an epidemic multidrug-resistant Acinetobacter baumannii strain belonging to the European clone II group. Antimicrob Agents Chemother 2008;52:2616–2625 [CrossRef]
    [Google Scholar]
  141. Partridge SR, Kwong SM, Firth N, Jensen SO. Mobile genetic elements associated with antimicrobial resistance. Clin Microbiol Rev 2018;31: [CrossRef]
    [Google Scholar]
  142. Holt KE, Hamidian M, Kenyon JJ, Wynn MT, Hawkey J et al. Genome sequence of Acinetobacter baumannii strain A1, an early example of antibiotic-resistant global clone 1. Genome Announc 2015;3:e00032–15 [CrossRef]
    [Google Scholar]
  143. Wick RR, Judd LM, Gorrie CL, Holt KE. Completing bacterial genome assemblies with multiplex MinION sequencing. Microb Genom 2017;3:e000132 [CrossRef]
    [Google Scholar]
  144. Greig DR, Dallman TJ, Hopkins KL, Jenkins C. MinION nanopore sequencing identifies the position and structure of bacterial antibiotic resistance determinants in a multidrug-resistant strain of enteroaggregative Escherichia coli. Microb Genom 2018;4:0.000213 [CrossRef]
    [Google Scholar]
  145. Gheorghe I, Novais Ângela, Grosso F, Rodrigues C, Chifiriuc MC et al. Snapshot on carbapenemase-producing Pseudomonas aeruginosa and Acinetobacter baumannii in Bucharest hospitals reveals unusual clones and novel genetic surroundings for bla OXA-23. J Antimicrob Chemother 2015;70:1016–1020 [CrossRef]
    [Google Scholar]
  146. Nigro SJ, Holt KE, Pickard D, Hall RM. Carbapenem and amikacin resistance on a large conjugative Acinetobacter baumannii plasmid. J Antimicrob Chemother 2015;70:1259–1261 [CrossRef]
    [Google Scholar]
  147. Kim DH, Park YK, Ko KS. Variations of AbaR4-type resistance islands in Acinetobacter baumannii isolates from South Korea. Antimicrob Agents Chemother 2012;56:4544–4547 [CrossRef]
    [Google Scholar]
  148. Zhou H, Zhang T, Yu D, Pi B, Yang Q et al. Genomic analysis of the multidrug-resistant Acinetobacter baumannii strain MDR-ZJ06 widely spread in China. Antimicrob Agents Chemother 2011;55:4506–4512 [CrossRef]
    [Google Scholar]
  149. Hamidian M, Hall RM. The AbaR antibiotic resistance islands found in Acinetobacter baumannii global clone 1 - Structure, origin and evolution. Drug Resist Updat 2018;41:26–39 [CrossRef]
    [Google Scholar]
  150. Hsu LY, Apisarnthanarak A, Khan E, Suwantarat N, Ghafur A et al. Carbapenem-resistant Acinetobacter baumannii and enterobacteriaceae in South and Southeast Asia. Clin Microbiol Rev 2017;30:1–22 [CrossRef]
    [Google Scholar]
  151. Bertini A, Poirel L, Mugnier PD, Villa L, Nordmann P et al. Characterization and PCR-based replicon typing of resistance plasmids in Acinetobacter baumannii. Antimicrob Agents Chemother 2010;54:4168–4177 [CrossRef]
    [Google Scholar]
  152. Blackwell GA, Hall RM. Mobilisation of a small Acinetobacter plasmid carrying an oriT transfer origin by conjugative RepAci6 plasmids. Plasmid 2019;103:36–44 [CrossRef]
    [Google Scholar]
  153. Schultz MB, Pham Thanh D, Tran Do Hoan N, Wick RR, Ingle DJ et al. Repeated local emergence of carbapenem-resistant Acinetobacter baumannii in a single hospital ward. Microb Genom 2016;2:e000050 [CrossRef]
    [Google Scholar]
  154. Poirel L, Nordmann P. Genetic structures at the origin of acquisition and expression of the carbapenem-hydrolyzing oxacillinase gene bla OXA-58 in Acinetobacter baumannii. Antimicrob Agents Chemother 2006;50:1442–1448 [CrossRef]
    [Google Scholar]
  155. Blackwell GA, Hall RM. The tet39 Determinant and the msrE-mphE Genes in Acinetobacter Plasmids Are Each Part of Discrete Modules Flanked by Inversely Oriented pdif (XerC-XerD) Sites. Antimicrob Agents Chemother 2017;61:e00780–17 [CrossRef]
    [Google Scholar]
  156. Cameranesi MM, Morán-Barrio J, Limansky AS, Repizo GD, Viale AM. Site-specific recombination at XerC/D sites mediates the formation and resolution of plasmid co-integrates carrying a bla OXA-58- and TnaphA6-resistance module in Acinetobacter baumannii. Front Microbiol 2018;9:66 [CrossRef]
    [Google Scholar]
  157. D'Andrea MM, Giani T, D'Arezzo S, Capone A, Petrosillo N et al. Characterization of pABVA01, a plasmid encoding the OXA-24 carbapenemase from Italian isolates of Acinetobacter baumannii. Antimicrob Agents Chemother 2009;53:3528–3533 [CrossRef]
    [Google Scholar]
  158. Grosso F, Quinteira S, Poirel L, Novais Ângela, Peixe L. Role of common bla OXA-24/OXA-40 - carrying platforms and plasmids in the spread of OXA-24/OXA-40 among Acinetobacter species clinical isolates. Antimicrob Agents Chemother 2012;56:3969–3972 [CrossRef]
    [Google Scholar]
  159. Merino M, Acosta J, Poza M, Sanz F, Beceiro A et al. OXA-24 carbapenemase gene flanked by XerC/XerD-like recombination sites in different plasmids from different Acinetobacter species isolated during a nosocomial outbreak. Antimicrob Agents Chemother 2010;54:2724–2727 [CrossRef]
    [Google Scholar]
  160. Girlich D, Damaceno QS, Oliveira AC, Nordmann P. OXA-253, a variant of the carbapenem-hydrolyzing class D β-lactamase OXA-143 in Acinetobacter baumannii. Antimicrob Agents Chemother 2014;58:2976–2978 [CrossRef]
    [Google Scholar]
  161. Hamidian M, Nigro SJ, Hartstein RM, Hall RM. RCH51, a multiply antibiotic-resistant Acinetobacter baumannii ST103IP isolate, carries resistance genes in three plasmids, including a novel potentially conjugative plasmid carrying oxa235 in transposon Tn6252. J Antimicrob Chemother 2017;72:1907–1910 [CrossRef]
    [Google Scholar]
  162. Higgins PG, Pérez-Llarena FJ, Zander E, Fernández A, Bou G et al. OXA-235, a novel class D beta-lactamase involved in resistance to carbapenems in Acinetobacter baumannii. Antimicrob Agents Chemother 2013;57:2121–2126 [CrossRef]
    [Google Scholar]
  163. Ou HY, Kuang SN, He X, Molgora BM, Ewing PJ et al. Complete genome sequence of hypervirulent and outbreak-associated Acinetobacter baumannii strain LAC-4: epidemiology, resistance genetic determinants and potential virulence factors. Sci Rep 2015;5:8643 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000306
Loading

Supplements

 Supplementary material 1 

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error