1887

Abstract

is an intracellular pathogen responsible for causing Q fever in humans, a disease with varied presentations ranging from a mild flu-like sickness to a debilitating illness that can result in endocarditis. The intracellular lifestyle of is unique, residing in an acidic phagolysosome-like compartment within host cells. An understanding of the core molecular biology of will greatly increase our understanding of growth, survival and pathogenesis. We used transposon-directed insertion site sequencing (TraDIS) to reveal Nine Mile Phase II genes fundamental for growth and survival. Screening a transposon library containing >10 000 unique transposon mutants revealed 512 predicted essential genes. Essential routes of synthesis were identified for the mevalonate pathway, as well as peptidoglycan and biotin synthesis. Some essential genes identified (e.g. predicted type IV secretion system effector genes) are typically considered to be associated with virulence, a caveat concerning the axenic media used in the study. Investigation into the conservation of the essential genes identified revealed that 78 % are conserved across all strains sequenced to date, which probably play critical functions. This is the first report of a whole genome transposon screen in that has been undertaken for the identification of essential genes.

Funding
This study was supported by the:
  • Defence Science and Technology Laboratory (Award DSTLX-1000123071)
    • Principle Award Recipient: RichardTitball
  • This information is licensed under the Open Government Licence 3.0. This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000944
2023-02-01
2024-12-02
Loading full text...

Full text loading...

/deliver/fulltext/mgen/9/2/mgen000944.html?itemId=/content/journal/mgen/10.1099/mgen.0.000944&mimeType=html&fmt=ahah

References

  1. Honarmand H. Q Fever: an old but still a poorly understood disease. Interdiscip Perspect Infect Dis 2012; 2012:131932 [View Article]
    [Google Scholar]
  2. Angelakis E, Raoult D. Q fever. Vet Microbiol 2010; 140:297–309 [View Article]
    [Google Scholar]
  3. Coleman SA, Fischer ER, Howe D, Mead DJ, Heinzen RA. Temporal analysis of Coxiella burnetii morphological differentiation. J Bacteriol 2004; 186:7344–7352 [View Article] [PubMed]
    [Google Scholar]
  4. Omsland A, Cockrell DC, Howe D, Fischer ER, Virtaneva K et al. Host cell-free growth of the Q fever bacterium Coxiella burnetii. Proc Natl Acad Sci 2009; 106:4430–4434 [View Article]
    [Google Scholar]
  5. Seshadri R, Paulsen IT, Eisen JA, Read TD, Nelson KE et al. Complete genome sequence of the Q-fever pathogen Coxiella burnetii. Proc Natl Acad Sci 2003; 100:5455–5460 [View Article]
    [Google Scholar]
  6. Thiele D, Willems H, Haas M, Krauss H. Analysis of the entire nucleotide sequence of the cryptic plasmid QpH1 from Coxiella burnetti. Eur J Epidemiol 1994; 10:413–420 [View Article] [PubMed]
    [Google Scholar]
  7. Beare PA, Samuel JE, Howe D, Virtaneva K, Porcella SF et al. Genetic diversity of the Q fever agent, Coxiella burnetii, assessed by microarray-based whole-genome comparisons. J Bacteriol 2006; 188:2309–2324 [View Article] [PubMed]
    [Google Scholar]
  8. Hackstadt T, Peacock MG, Hitchcock PJ, Cole RL. Lipopolysaccharide variation in Coxiella burnetti: intrastrain heterogeneity in structure and antigenicity. Infect Immun 1985; 48:359–365 [View Article] [PubMed]
    [Google Scholar]
  9. Millar JA, Beare PA, Moses AS, Martens CA, Heinzen RA et al. Whole-genome sequence of Coxiella burnetii nine mile RSA439 (phase II, clone 4), a laboratory workhorse strain. Genome Announc 2017; 5:23 [View Article]
    [Google Scholar]
  10. Metters G, Norville IH, Titball RW, Hemsley CM. From cell culture to cynomolgus macaque: infection models show lineage-specific virulence potential of Coxiella burnetii. J Med Microbiol 2019; 68:1419–1430 [View Article] [PubMed]
    [Google Scholar]
  11. Beare PA, Samuel JE, Howe D, Virtaneva K, Porcella SF et al. Genetic diversity of the Q fever agent, Coxiella burnetii, assessed by microarray-based whole-genome comparisons. J Bacteriol 2006; 188:2309–2324 [View Article] [PubMed]
    [Google Scholar]
  12. D’Amato F, Eldin C, Raoult D. The contribution of genomics to the study of Q fever. Future Microbiol 2016; 11:253–272 [View Article] [PubMed]
    [Google Scholar]
  13. Tilburg JJHC, Roest H-JIJ, Buffet S, Nabuurs-Franssen MH, Horrevorts AM et al. Epidemic genotype of Coxiella burnetii among goats, sheep, and humans in the Netherlands. Emerg Infect Dis 2012; 18:887–889 [View Article]
    [Google Scholar]
  14. Hemsley CM, O’Neill PA, Essex-Lopresti A, Norville IH, Atkins TP et al. Extensive genome analysis of Coxiella burnetii reveals limited evolution within genomic groups. BMC Genomics 2019; 20:441 [View Article]
    [Google Scholar]
  15. Pearson T, Hornstra HM, Hilsabeck R, Gates LT, Olivas SM et al. High prevalence and two dominant host-specific genotypes of Coxiella burnetii in U.S. milk. BMC Microbiol 2014; 14:41 [View Article]
    [Google Scholar]
  16. Kersh GJ, Oliver LD, Self JS, Fitzpatrick KA, Massung RF. Virulence of pathogenic Coxiella burnetii strains after growth in the absence of host cells. Vector Borne Zoonotic Dis 2011; 11:1433–1438 [View Article] [PubMed]
    [Google Scholar]
  17. Vincent GA. Molecular Characterisation of Australian Coxiella burnetii Isolates Murdoch, Australia: Murdoch University; 2013
    [Google Scholar]
  18. Beare PA, Jeffrey BM, Martens CA, Heinzen RA. Draft genome sequences of the avirulent Coxiella burnetii Dugway 7D77-80 and Dugway 7E65-68 strains isolated from Rodents in Dugway, Utah. Genome Announc 2017; 5:39 [View Article]
    [Google Scholar]
  19. Beare PA, Unsworth N, Andoh M, Voth DE, Omsland A et al. Comparative genomics reveal extensive transposon-mediated genomic plasticity and diversity among potential effector proteins within the genus Coxiella. Infect Immun 2009; 77:642–656 [View Article] [PubMed]
    [Google Scholar]
  20. Suhan ML, Chen SY, Thompson HA. Transformation of Coxiella burnetii to ampicillin resistance. J Bacteriol 1996; 178:2701–2708 [View Article] [PubMed]
    [Google Scholar]
  21. Beare PA, Howe D, Cockrell DC, Omsland A, Hansen B et al. Characterization of a Coxiella burnetii ftsZ mutant generated by Himar1 transposon mutagenesis. J Bacteriol 2009; 191:1369–1381 [View Article] [PubMed]
    [Google Scholar]
  22. Martinez E, Cantet F, Fava L, Norville I, Bonazzi M. Identification of OmpA, a Coxiella burnetii protein involved in host cell invasion, by multi-phenotypic high-content screening. PLoS Pathog 2014; 10:e1004013 [View Article]
    [Google Scholar]
  23. van Opijnen T, Bodi KL, Camilli A. Tn-seq: high-throughput parallel sequencing for fitness and genetic interaction studies in microorganisms. Nat Methods 2009; 6:767–772 [View Article] [PubMed]
    [Google Scholar]
  24. Langridge GC, Phan M-D, Turner DJ, Perkins TT, Parts L et al. Simultaneous assay of every Salmonella typhi gene using one million transposon mutants. Genome Res 2009; 19:2308–2316 [View Article]
    [Google Scholar]
  25. Gawronski JD, Wong SMS, Giannoukos G, Ward DV, Akerley BJ. Tracking insertion mutants within libraries by deep sequencing and a genome-wide screen for Haemophilus genes required in the lung. Proc Natl Acad Sci 2009; 106:16422–16427 [View Article]
    [Google Scholar]
  26. Goodman AL, McNulty NP, Zhao Y, Leip D, Mitra RD et al. Identifying genetic determinants needed to establish a human gut symbiont in its habitat. Cell Host Microbe 2009; 6:279–289 [View Article]
    [Google Scholar]
  27. Williams JC, Peacock MG, McCaul TF. Immunological and biological characterization of Coxiella burnetii, phases I and II, separated from host components. Infect Immun 1981; 32:840–851 [View Article] [PubMed]
    [Google Scholar]
  28. Narayanan AM, Ramsey MM, Stacy A, Whiteley M. Defining genetic fitness determinants and creating genomic resources for an oral pathogen. Appl Environ Microbiol 2017; 83:14 [View Article]
    [Google Scholar]
  29. Stacy A, Fleming D, Lamont RJ, Rumbaugh KP, Whiteley M. A commensal bacterium promotes virulence of an opportunistic pathogen via cross-respiration. mBio 2016; 7:e00782-16 [View Article]
    [Google Scholar]
  30. Turner KH, Wessel AK, Palmer GC, Murray JL, Whiteley M. Essential genome of Pseudomonas aeruginosa in cystic fibrosis sputum. Proc Natl Acad Sci 2015; 112:4110–4115 [View Article]
    [Google Scholar]
  31. Lewin GR, Stacy A, Michie KL, Lamont RJ, Whiteley M. Large-scale identification of pathogen essential genes during coinfection with sympatric and allopatric microbes. Proc Natl Acad Sci 2019; 116:19685–19694 [View Article]
    [Google Scholar]
  32. Zhang R, Ou HY, Zhang CT. DEG: a database of essential genes. Nucleic Acids Research 2004; 32:271D–272 [View Article] [PubMed]
    [Google Scholar]
  33. Weber MM, Chen C, Rowin K, Mertens K, Galvan G et al. Identification of Coxiella burnetii type IV secretion substrates required for intracellular replication and Coxiella-containing vacuole formation. J Bacteriol 2013; 195:3914–3924 [View Article]
    [Google Scholar]
  34. DeJesus MA, Gerrick ER, Xu W, Park SW, Long JE et al. Comprehensive essentiality analysis of the Mycobacterium tuberculosis genome via saturating transposon mutagenesis. mBio 2017; 8:e02133–16 [View Article]
    [Google Scholar]
  35. Dembek M, Barquist L, Boinett CJ, Cain AK, Mayho M et al. High-throughput analysis of gene essentiality and sporulation in Clostridium difficile. mBio 2015; 6: [View Article]
    [Google Scholar]
  36. Le Breton Y, Belew AT, Valdes KM, Islam E, Curry P et al. Essential genes in the core genome of the human pathogen Streptococcus pyogenes. Sci Rep 2015; 5:9838 [View Article]
    [Google Scholar]
  37. Ruiz L, Bottacini F, Boinett CJ, Cain AK, O’Connell-Motherway M et al. The essential genomic landscape of the commensal Bifidobacterium breve UCC2003. Sci Rep 2017; 7:5648 [View Article]
    [Google Scholar]
  38. Barquist L, Mayho M, Cummins C, Cain AK, Boinett CJ et al. The TraDIS toolkit: sequencing and analysis for dense transposon mutant libraries. Bioinformatics 2016; 32:1109–1111 [View Article] [PubMed]
    [Google Scholar]
  39. Barquist L, Langridge GC, Turner DJ, Phan M-D, Turner AK et al. A comparison of dense transposon insertion libraries in the Salmonella serovars Typhi and Typhimurium. Nucleic Acids Res 2013; 41:4549–4564 [View Article] [PubMed]
    [Google Scholar]
  40. Newton HJ, Kohler LJ, McDonough JA, Temoche-Diaz M, Crabill E et al. A screen of Coxiella burnetii mutants reveals important roles for Dot/Icm effectors and host autophagy in vacuole biogenesis. PLoS Pathog 2014; 10:e1004286 [View Article]
    [Google Scholar]
  41. Larson CL, Beare PA, Howe D, Heinzen RA. Coxiella burnetii effector protein subverts clathrin-mediated vesicular trafficking for pathogen vacuole biogenesis. Proc Natl Acad Sci 2013; 110:E4770–9 [View Article]
    [Google Scholar]
  42. Tatusov RL, Galperin MY, Natale DA, Koonin EV. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 2000; 28:33–36 [View Article] [PubMed]
    [Google Scholar]
  43. Vollmer-Conna U, Piraino BF, Cameron B, Davenport T, Hickie I et al. Cytokine polymorphisms have a synergistic effect on severity of the acute sickness response to infection. Clin Infect Dis 2008; 47:1418–1425 [View Article] [PubMed]
    [Google Scholar]
  44. Grazziotin AL, Vidal NM, Venancio TM. Uncovering major genomic features of essential genes in Bacteria and a methanogenic Archaea. FEBS J 2015; 282:3395–3411 [View Article] [PubMed]
    [Google Scholar]
  45. Kersh GJ, Priestley RA, Hornstra HM, Self JS, Fitzpatrick KA et al. Genotyping and axenic growth of Coxiella burnetii isolates found in the United States environment. Vector Borne Zoonotic Dis 2016; 16:588–594 [View Article]
    [Google Scholar]
  46. Russell-Lodrigue KE, Andoh M, Poels MWJ, Shive HR, Weeks BR et al. Coxiella burnetii isolates cause genogroup-specific virulence in mouse and guinea pig models of acute Q fever. Infect Immun 2009; 77:5640–5650 [View Article] [PubMed]
    [Google Scholar]
  47. STOENNER HG, LACKMAN DB. The biologic properties of Coxiella burnetii isolated from rodents collected in Utah. Am J Hyg 1960; 71:45–51 [View Article] [PubMed]
    [Google Scholar]
  48. Long CM, Beare PA, Cockrell DC, Larson CL, Heinzen RA. Comparative virulence of diverse Coxiella burnetii strains. Virulence 2019; 10:133–150 [View Article] [PubMed]
    [Google Scholar]
  49. Wilding EI, Brown JR, Bryant AP, Chalker AF, Holmes DJ et al. Identification, evolution, and essentiality of the mevalonate pathway for isopentenyl diphosphate biosynthesis in gram-positive cocci. J Bacteriol 2000; 182:4319–4327 [View Article] [PubMed]
    [Google Scholar]
  50. Rohdich F, Bacher A, Eisenreich W. Isoprenoid biosynthetic pathways as anti-infective drug targets. Biochem Soc Trans 2005; 33:785–791 [View Article] [PubMed]
    [Google Scholar]
  51. Kovacs-Simon A, Metters G, Norville I, Hemsley C, Titball RW. Coxiella burnetii replicates in Galleria mellonella hemocytes and transcriptome mapping reveals in vivo regulated genes. Virulence 2020; 11:1268–1278 [View Article]
    [Google Scholar]
  52. Balibar CJ, Shen X, Tao J. The mevalonate pathway of Staphylococcus aureus. J Bacteriol 2009; 191:851–861 [View Article]
    [Google Scholar]
  53. Wang SX, Zhang XC, Wang SY, Shun TT, He YL. 18F-FDG PET/CT localized valvular infection in chronic Q fever endocarditis. J Nucl Cardiol 2015; 22:1320–1322 [View Article] [PubMed]
    [Google Scholar]
  54. Shin SJ, Wu C, Steinberg H, Talaat AM. Identification of novel virulence determinants in Mycobacterium paratuberculosis by screening a library of insertional mutants. Infect Immun 2006; 74:3825–3833 [View Article]
    [Google Scholar]
  55. DiRita VJ, Lai Y-C, Peng H-L, Chang H-Y. Identification of genes induced in vivo during Klebsiella pneumoniae CG43 infection. Infect Immun 2001; 69:7140–7145 [View Article]
    [Google Scholar]
  56. Schauer K, Geginat G, Liang C, Goebel W, Dandekar T et al. Deciphering the intracellular metabolism of Listeria monocytogenes by mutant screening and modelling. BMC Genomics 2010; 11:573 [View Article] [PubMed]
    [Google Scholar]
  57. Begley M, Bron PA, Heuston S, Casey PG, Englert N et al. Analysis of the isoprenoid biosynthesis pathways in Listeria monocytogenes reveals a role for the alternative 2-C-methyl-D-erythritol 4-phosphate pathway in murine infection. Infect Immun 2008; 76:5392–5401 [View Article] [PubMed]
    [Google Scholar]
  58. Begley M, Gahan CGM, Kollas A-K, Hintz M, Hill C et al. The interplay between classical and alternative isoprenoid biosynthesis controls gammadelta T cell bioactivity of Listeria monocytogenes. FEBS Lett 2004; 561:99–104 [View Article] [PubMed]
    [Google Scholar]
  59. Feng Y, Napier BA, Manandhar M, Henke SK, Weiss DS et al. A Francisella virulence factor catalyses an essential reaction of biotin synthesis. Mol Microbiol 2014; 91:300–314 [View Article] [PubMed]
    [Google Scholar]
  60. Weiss DS, Brotcke A, Henry T, Margolis JJ, Chan K et al. In vivo negative selection screen identifies genes required for Francisella virulence. Proc Natl Acad Sci 2007; 104:6037–6042 [View Article]
    [Google Scholar]
  61. Napier BA, Meyer L, Bina JE, Miller MA, Sjöstedt A et al. Link between intraphagosomal biotin and rapid phagosomal escape in Francisella. Proc Natl Acad Sci 2012; 109:18084–18089 [View Article]
    [Google Scholar]
  62. Woong Park S, Klotzsche M, Wilson DJ, Boshoff HI, Eoh H et al. Evaluating the sensitivity of Mycobacterium tuberculosis to biotin deprivation using regulated gene expression. PLOS Pathog 2011; 7:e1002264 [View Article]
    [Google Scholar]
  63. Sassetti CM, Rubin EJ. Genetic requirements for mycobacterial survival during infection. Proc Natl Acad Sci 2003; 100:12989–12994 [View Article]
    [Google Scholar]
  64. Carfrae LA, MacNair CR, Brown CM, Tsai CN, Weber BS et al. Mimicking the human environment in mice reveals that inhibiting biotin biosynthesis is effective against antibiotic-resistant pathogens. Nat Microbiol 2020; 5:93–101 [View Article] [PubMed]
    [Google Scholar]
  65. Sassetti CM, Boyd DH, Rubin EJ. Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol 2003; 48:77–84 [View Article] [PubMed]
    [Google Scholar]
  66. Zhang YJ, Ioerger TR, Huttenhower C, Long JE, Sassetti CM et al. Global assessment of genomic regions required for growth in Mycobacterium tuberculosis. PLOS Pathog 2012; 8:e1002946 [View Article]
    [Google Scholar]
  67. Schnappinger D, Ehrt S, Voskuil MI, Liu Y, Mangan JA et al. Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: insights into the phagosomal environment. J Exp Med 2003; 198:693–704 [View Article]
    [Google Scholar]
  68. Endley S, McMurray D, Ficht TA. Interruption of the cydB locus in Brucella abortus attenuates intracellular survival and virulence in the mouse model of infection. J Bacteriol 2001; 183:2454–2462 [View Article] [PubMed]
    [Google Scholar]
  69. Goldman BS, Gabbert KK, Kranz RG. The temperature-sensitive growth and survival phenotypes of Escherichia coli cydDC and cydAB strains are due to deficiencies in cytochrome bd and are corrected by exogenous catalase and reducing agents. J Bacteriol 1996; 178:6348–6351 [View Article] [PubMed]
    [Google Scholar]
  70. Mihara H, Esaki N. Bacterial cysteine desulfurases: their function and mechanisms. Appl Microbiol Biotechnol 2002; 60:12–23 [View Article] [PubMed]
    [Google Scholar]
  71. Nachin L, El Hassouni M, Loiseau L, Expert D, Barras F. SoxR-dependent response to oxidative stress and virulence of Erwinia chrysanthemi: the key role of SufC, an orphan ABC ATPase. Mol Microbiol 2001; 39:960–972 [View Article] [PubMed]
    [Google Scholar]
  72. Outten FW, Wood MJ, Munoz FM, Storz G. The SufE protein and the SufBCD complex enhance SufS cysteine desulfurase activity as part of a sulfur transfer pathway for Fe-S cluster assembly in Escherichia coli. J Biol Chem 2003; 278:45713–45719 [View Article] [PubMed]
    [Google Scholar]
  73. Hidese R, Mihara H, Esaki N. Bacterial cysteine desulfurases: versatile key players in biosynthetic pathways of sulfur-containing biofactors. Appl Microbiol Biotechnol 2011; 91:47–61 [View Article] [PubMed]
    [Google Scholar]
  74. Takahashi Y, Tokumoto U. A third bacterial system for the assembly of iron-sulfur clusters with homologs in archaea and plastids. J Biol Chem 2002; 277:28380–28383 [View Article] [PubMed]
    [Google Scholar]
  75. Kumar TK, Samuel D, Jayaraman G, Srimathi T, Yu C. The role of proline in the prevention of aggregation during protein folding in vitro. Biochem Mol Biol Int 1998; 46:509–517 [View Article] [PubMed]
    [Google Scholar]
  76. Pemberton TA, Still BR, Christensen EM, Singh H, Srivastava D et al. Proline: Mother Nature’s cryoprotectant applied to protein crystallography. Acta Crystallogr D Biol Crystallogr 2012; 68:1010–1018 [View Article] [PubMed]
    [Google Scholar]
  77. Culham DE, Vernikovska Y, Tschowri N, Keates RAB, Wood JM et al. Periplasmic loops of osmosensory transporter ProP in Escherichia coli are sensitive to osmolality. Biochemistry 2008; 47:13584–13593 [View Article] [PubMed]
    [Google Scholar]
  78. Hendrix L, Mallavia LP. Active transport of proline by Coxiella burnetii. J Gen Microbiol 1984; 130:2857–2863 [View Article] [PubMed]
    [Google Scholar]
  79. Hackstadt T, Williams JC. Biochemical stratagem for obligate parasitism of eukaryotic cells by Coxiella burnetii. Proc Natl Acad Sci 1981; 78:3240–3244 [View Article]
    [Google Scholar]
  80. Zusman T, Aloni G, Halperin E, Kotzer H, Degtyar E et al. The response regulator PmrA is a major regulator of the icm/dot type IV secretion system in Legionella pneumophila and Coxiella burnetii. Mol Microbiol 2007; 63:1508–1523 [View Article] [PubMed]
    [Google Scholar]
  81. Beare PA, Sandoz KM, Larson CL, Howe D, Kronmiller B et al. Essential role for the response regulator PmrA in Coxiella burnetii type 4B secretion and colonization of mammalian host cells. J Bacteriol 2014; 196:1925–1940 [View Article] [PubMed]
    [Google Scholar]
  82. Newton P, Thomas DR, Reed SCO, Lau N, Xu B et al. Lysosomal degradation products induce Coxiella burnetii virulence. Proc Natl Acad Sci 2020; 117:6801–6810 [View Article]
    [Google Scholar]
  83. Trovato M, Maras B, Linhares F, Costantino P. The plant oncogene rolD encodes a functional ornithine cyclodeaminase. Proc Natl Acad Sci U S A 2001; 98:13449–13453 [View Article]
    [Google Scholar]
  84. Schindler U, Sans N, Schröder J. Ornithine cyclodeaminase from octopine Ti plasmid Ach5: identification, DNA sequence, enzyme properties, and comparison with gene and enzyme from nopaline Ti plasmid C58. J Bacteriol 1989; 171:847–854 [View Article] [PubMed]
    [Google Scholar]
  85. Sharma S, Shinde S, Verslues PE. Functional characterization of an ornithine cyclodeaminase-like protein of Arabidopsis thaliana. BMC Plant Biol 2013; 13:182 [View Article]
    [Google Scholar]
  86. Brennan RE, Kiss K, Baalman R, Samuel JE. Cloning, expression, and characterization of a Coxiella burnetii Cu/Zn Superoxide dismutase. BMC Microbiol 2015; 15:99 [View Article]
    [Google Scholar]
  87. Moule MG, Hemsley CM, Seet Q, Guerra-Assunção JA, Lim J et al. Genome-wide saturation mutagenesis of Burkholderia pseudomallei K96243 predicts essential genes and novel targets for antimicrobial development. mBio 2014; 5:e00926–13 [View Article]
    [Google Scholar]
  88. Luo S, Lu S, Fan H, Sun Z, Hu Y et al. The Coxiella burnetii QpH1 plasmid is a virulence factor for colonizing bone marrow-derived murine macrophages. J Bacteriol 2021; 203:e00588-20 [View Article]
    [Google Scholar]
  89. Potter SC, Luciani A, Eddy SR, Park Y, Lopez R et al. HMMER web server: 2018 update. Nucleic Acids Res 2018; 46:W200–W204 [View Article] [PubMed]
    [Google Scholar]
  90. Chen C, Banga S, Mertens K, Weber MM, Gorbaslieva I et al. Large-scale identification and translocation of type IV secretion substrates by Coxiella burnetii. Proc Natl Acad Sci 2010; 107:21755–21760 [View Article]
    [Google Scholar]
  91. Pan X, Lührmann A, Satoh A, Laskowski-Arce MA, Roy CR. Ankyrin repeat proteins comprise a diverse family of bacterial type IV effectors. Science 2008; 320:1651–1654 [View Article] [PubMed]
    [Google Scholar]
  92. Lifshitz Z, Burstein D, Schwartz K, Shuman HA, Pupko T et al. Identification of novel Coxiella burnetii Icm/Dot effectors and genetic analysis of their involvement in modulating a mitogen-activated protein kinase pathway. Infect Immun 2014; 82:3740–3752 [View Article] [PubMed]
    [Google Scholar]
  93. Larson CL, Beare PA, Voth DE, Howe D, Cockrell DC et al. Coxiella burnetii effector proteins that localize to the parasitophorous vacuole membrane promote intracellular replication. Infect Immun 2015; 83:661–670 [View Article] [PubMed]
    [Google Scholar]
  94. Voth DE, Beare PA, Howe D, Sharma UM, Samoilis G et al. The Coxiella burnetii cryptic plasmid is enriched in genes encoding type IV secretion system substrates. J Bacteriol 2011; 193:1493–1503 [View Article] [PubMed]
    [Google Scholar]
/content/journal/mgen/10.1099/mgen.0.000944
Loading
/content/journal/mgen/10.1099/mgen.0.000944
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error