1887

Abstract

Bacterial endosymbionts of the groups , and are well known for their diverse effects on their arthropod hosts, ranging from mutualistic relationships to reproductive phenotypes. Here, we analysed a unique system in which the dwarf spider is co-infected with up to five different endosymbionts affiliated with , ‘ Tisiphia’ (formerly Torix group ), and . Using short-read genome sequencing data, we show that the endosymbionts are heterogeneously distributed among populations and are frequently found co-infecting spider individuals. To study this intricate host–endosymbiont system on a genome-resolved level, we used long-read sequencing to reconstruct closed genomes of the , ‘. Tisiphia’ and endosymbionts. We provide insights into the ecology and evolution of the endosymbionts and shed light on the interactions with their spider host. We detected high quantities of transposable elements in all endosymbiont genomes and provide evidence that ancestors of the , ‘. Tisiphia’ and endosymbionts have co-infected the same hosts in the past. Our findings contribute to broadening our knowledge about endosymbionts infecting one of the largest animal phyla on Earth and show the usefulness of transposable elements as an evolutionary ‘contact-tracing’ tool.

Funding
This study was supported by the:
  • Nationaal Fonds voor Wetenschappelijk Onderzoek (Award 1527617N)
    • Principle Award Recipient: FrederikHendrickx
  • Universität Wien (Award uni:docs)
    • Principle Award Recipient: TamaraHalter
  • Austrian Science Fund (Award DOC 69-B)
    • Principle Award Recipient: MatthiasHorn
  • Horizon 2020 Framework Programme (Award 840270)
    • Principle Award Recipient: AlejandroManzano-Marín
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000943
2023-02-09
2024-12-02
Loading full text...

Full text loading...

/deliver/fulltext/mgen/9/2/mgen000943.html?itemId=/content/journal/mgen/10.1099/mgen.0.000943&mimeType=html&fmt=ahah

References

  1. Giribet G, Edgecombe GD. The Phylogeny and Evolutionary History of Arthropods. Curr Biol 2019; 29:R592–R602 [View Article] [PubMed]
    [Google Scholar]
  2. Weinert LA, Araujo-Jnr EV, Ahmed MZ, Welch JJ. The incidence of bacterial endosymbionts in terrestrial arthropods. Proc Biol Sci 2015; 282:20150249 [View Article] [PubMed]
    [Google Scholar]
  3. Lawson ET, Mousseau TA, Klaper R, Hunter MD, Werren JH. Rickettsia associated with male-killing in a buprestid beetle. Heredity (Edinb) 2001; 86:497–505 [View Article] [PubMed]
    [Google Scholar]
  4. Giorgini M, Monti MM, Caprio E, Stouthamer R, Hunter MS. Feminization and the collapse of haplodiploidy in an asexual parasitoid wasp harboring the bacterial symbiont Cardinium. Heredity (Edinb) 2009; 102:365–371 [View Article] [PubMed]
    [Google Scholar]
  5. Giorgini M, Bernardo U, Monti MM, Nappo AG, Gebiola M. Rickettsia symbionts cause parthenogenetic reproduction in the parasitoid wasp Pnigalio soemius (Hymenoptera: Eulophidae). Appl Environ Microbiol 2010; 76:2589–2599 [View Article] [PubMed]
    [Google Scholar]
  6. Kaur R, Shropshire JD, Cross KL, Leigh B, Mansueto AJ et al. Living in the endosymbiotic world of Wolbachia: A centennial review. Cell Host Microbe 2021; 29:879–893 [View Article] [PubMed]
    [Google Scholar]
  7. Doremus MR, Stouthamer CM, Kelly SE, Schmitz-Esser S, Hunter MS. Quality over quantity: unraveling the contributions to cytoplasmic incompatibility caused by two coinfecting Cardinium symbionts. Heredity (Edinb) 2022; 128:187–195 [View Article] [PubMed]
    [Google Scholar]
  8. Konecka E, Olszanowski Z. A new Cardinium group of bacteria found in Achipteria coleoptrata (Acari: Oribatida). Mol Phylogenet Evol 2019; 131:64–71 [View Article] [PubMed]
    [Google Scholar]
  9. Zchori-Fein E, Perlman SJ, Kelly SE, Katzir N, Hunter MS. Characterization of a “Bacteroidetes” symbiont in Encarsia wasps (Hymenoptera: Aphelinidae): proposal of “Candidatus Cardinium hertigii.”. Int J Syst Evol Microbiol 2004; 54:961–968 [View Article] [PubMed]
    [Google Scholar]
  10. Perlman SJ, Kelly SE, Hunter MS. Population biology of cytoplasmic incompatibility: maintenance and spread of Cardinium symbionts in a parasitic wasp. Genetics 2008; 178:1003–1011 [View Article] [PubMed]
    [Google Scholar]
  11. Li C, He M, Yun Y, Peng Y. Co-infection with Wolbachia and Cardinium may promote the synthesis of fat and free amino acids in a small spider, Hylyphantes graminicola. J Invertebr Pathol 2020; 169:107307 [View Article] [PubMed]
    [Google Scholar]
  12. Li T-P, Zha S-S, Zhou C-Y, Gong J-T, Zhu Y-X et al. Newly introduced Cardinium endosymbiont reduces microbial diversity in the rice brown planthopper Nilaparvata lugens. FEMS Microbiol Ecol 2020; 96: Epub ahead of print November 26, 2020 [View Article]
    [Google Scholar]
  13. Hubert J, Nesvorna M, Pekar S, Green SJ, Klimov PB. Cardinium inhibits Wolbachia in its mite host, Tyrophagus putrescentiae, and affects host fitness. FEMS Microbiol Ecol 2021; 97: Epub ahead of print August 27, 2021 [View Article]
    [Google Scholar]
  14. Pilgrim J, Thongprem P, Davison HR, Siozios S, Baylis M et al. Torix Rickettsia are widespread in arthropods and reflect a neglected symbiosis. Gigascience 2021; 10: Epub ahead of print March 25, 2021 [View Article]
    [Google Scholar]
  15. Davison HR, Pilgrim J, Wybouw N, Parker J, Pirro S et al. Genomic diversity across the Rickettsia and “Candidatus Megaira” genera and proposal of genus status for the Torix group. Nat Commun 2022; 13:2630 [View Article] [PubMed]
    [Google Scholar]
  16. Werren JH, Hurst GD, Zhang W, Breeuwer JA, Stouthamer R et al. Rickettsial relative associated with male killing in the ladybird beetle (Adalia bipunctata). J Bacteriol 1994; 176:388–394 [View Article] [PubMed]
    [Google Scholar]
  17. Hagimori T, Abe Y, Date S, Miura K. The first finding of a Rickettsia bacterium associated with parthenogenesis induction among insects. Curr Microbiol 2006; 52:97–101 [View Article] [PubMed]
    [Google Scholar]
  18. Łukasik P, van Asch M, Guo H, Ferrari J, Godfray HCJ. Unrelated facultative endosymbionts protect aphids against a fungal pathogen. Ecol Lett 2013; 16:214–218 [View Article] [PubMed]
    [Google Scholar]
  19. Hendry TA, Hunter MS, Baltrus DA. The Facultative Symbiont Rickettsia Protects an Invasive Whitefly against Entomopathogenic Pseudomonas syringae Strains. Appl Environ Microbiol 2014; 80:7161–7168 [View Article] [PubMed]
    [Google Scholar]
  20. Kliot A, Cilia M, Czosnek H, Ghanim M. Implication of the bacterial endosymbiont Rickettsia spp. in interactions of the whitefly Bemisia tabaci with tomato yellow leaf curl virus. J Virol 2014; 88:5652–5660 [View Article] [PubMed]
    [Google Scholar]
  21. Vanthournout B, Hendrickx F. Endosymbiont dominated bacterial communities in a dwarf spider. PLoS One 2015; 10:e0117297 [View Article] [PubMed]
    [Google Scholar]
  22. Köstlbacher S, Collingro A, Halter T, Schulz F, Jungbluth SP et al. Pangenomics reveals alternative environmental lifestyles among chlamydiae. Nat Commun 2021; 12:4021 [View Article] [PubMed]
    [Google Scholar]
  23. Kostanjšek R, Štrus J, Drobne D, Avguštin G. “Candidatus Rhabdochlamydia porcellionis”, an intracellular bacterium from the hepatopancreas of the terrestrial isopod Porcellio scaber (Crustacea: Isopoda). Int J Syst Evol Microbiol 2004; 54:543–549 [View Article] [PubMed]
    [Google Scholar]
  24. Corsaro D, Thomas V, Goy G, Venditti D, Radek R et al. “Candidatus Rhabdochlamydia crassificans”, an intracellular bacterial pathogen of the cockroach Blatta orientalis (Insecta: Blattodea). Syst Appl Microbiol 2007; 30:221–228 [View Article] [PubMed]
    [Google Scholar]
  25. Pillonel T, Bertelli C, Aeby S, de Barsy M, Jacquier N et al. Sequencing the Obligate Intracellular Rhabdochlamydia helvetica within Its Tick Host Ixodes ricinus to Investigate Their Symbiotic Relationship. Genome Biol Evol 2019; 11:1334–1344 [View Article] [PubMed]
    [Google Scholar]
  26. Radek R. Light and electron microscopic study of a Rickettsiella species from the cockroach Blatta orientalis. J Invertebr Pathol 2000; 76:249–256 [View Article] [PubMed]
    [Google Scholar]
  27. Kostanjšek R, Pirc Marolt T. Pathogenesis, tissue distribution and host response to Rhabdochlamydia porcellionis infection in rough woodlouse Porcellio scaber. J Invertebr Pathol 2015; 125:56–67 [View Article] [PubMed]
    [Google Scholar]
  28. Goodacre SL, Martin OY, Thomas CFG, Hewitt GM. Wolbachia and other endosymbiont infections in spiders. Mol Ecol 2006; 15:517–527 [View Article] [PubMed]
    [Google Scholar]
  29. Zhang L, Yun Y, Hu G, Peng Y. Insights into the bacterial symbiont diversity in spiders. Ecol Evol 2018; 8:4899–4906 [View Article] [PubMed]
    [Google Scholar]
  30. Sheffer MM, Uhl G, Prost S, Lueders T, Urich T et al. Tissue- and Population-Level Microbiome Analysis of the Wasp Spider Argiope bruennichi Identified a Novel Dominant Bacterial Symbiont. Microorganisms 2019; 8:8 Epub ahead of print December 19, 2019 [View Article]
    [Google Scholar]
  31. Rosenwald LC, Sitvarin MI, White JA. Endosymbiotic Rickettsiella causes cytoplasmic incompatibility in a spider host. Proc Biol Sci 2020; 287:20201107 [View Article] [PubMed]
    [Google Scholar]
  32. White JA, Styer A, Rosenwald LC, Curry MM, Welch KD et al. Endosymbiotic Bacteria Are Prevalent and Diverse in Agricultural Spiders. Microb Ecol 2020; 79:472–481 [View Article] [PubMed]
    [Google Scholar]
  33. Wernegreen JJ. Genome evolution in bacterial endosymbionts of insects. Nat Rev Genet 2002; 3:850–861 [View Article] [PubMed]
    [Google Scholar]
  34. Gil R, Latorre A, Moya A. Bacterial endosymbionts of insects: insights from comparative genomics. Environ Microbiol 2004; 6:1109–1122 [View Article] [PubMed]
    [Google Scholar]
  35. Moran NA. Symbiosis as an adaptive process and source of phenotypic complexity. Proc Natl Acad Sci U S A 2007; 104 Suppl 1:8627–8633 [View Article] [PubMed]
    [Google Scholar]
  36. Sloan DB, Moran NA. The evolution of genomic instability in the obligate endosymbionts of whiteflies. Genome Biol Evol 2013; 5:783–793 [View Article] [PubMed]
    [Google Scholar]
  37. Hendrickx F, De Corte Z, Sonet G, Van Belleghem SM, Köstlbacher S et al. A masculinizing supergene underlies an exaggerated male reproductive morph in A spider. Nat Ecol Evol 2022; 6:195–206 [View Article] [PubMed]
    [Google Scholar]
  38. Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 2018; 34:3094–3100 [View Article] [PubMed]
    [Google Scholar]
  39. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13:e1005595 [View Article] [PubMed]
    [Google Scholar]
  40. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  41. Wick RR, Schultz MB, Zobel J, Holt KE. Bandage: interactive visualization of de novo genome assemblies. Bioinformatics 2015; 31:3350–3352 [View Article] [PubMed]
    [Google Scholar]
  42. Li D, Liu C-M, Luo R, Sadakane K, Lam T-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 2015; 31:1674–1676 [View Article] [PubMed]
    [Google Scholar]
  43. Kang DD, Li F, Kirton E, Thomas A, Egan R et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 2019; 7:e7359 [View Article] [PubMed]
    [Google Scholar]
  44. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods 2012; 9:357–359 [View Article] [PubMed]
    [Google Scholar]
  45. Worning P, Jensen LJ, Hallin PF, Staerfeldt H-H, Ussery DW. Origin of replication in circular prokaryotic chromosomes. Environ Microbiol 2006; 8:353–361 [View Article] [PubMed]
    [Google Scholar]
  46. Gao F, Zhang C-T. Ori-Finder: A web-based system for finding oriC s in unannotated bacterial genomes. BMC Bioinformatics 2008; 9:1–6 [View Article] [PubMed]
    [Google Scholar]
  47. Ioannidis P, Hotopp JCD, Sapountzis P, Siozios S, Tsiamis G et al. New criteria for selecting the origin of DNA replication in Wolbachia and closely related bacteria. BMC Genomics 2007; 8:182 [View Article] [PubMed]
    [Google Scholar]
  48. Schmieder R, Edwards R. Quality control and preprocessing of metagenomic datasets. Bioinformatics 2011; 27:863–864 [View Article] [PubMed]
    [Google Scholar]
  49. Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V et al. Twelve years of SAMtools and BCFtools. Gigascience 2021; 10: [View Article]
    [Google Scholar]
  50. Katoh K, Standley DM. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Molecular Biology and Evolution 2013; 30:772–780 [View Article] [PubMed]
    [Google Scholar]
  51. Talavera G, Castresana J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 2007; 56:564–577 [View Article] [PubMed]
    [Google Scholar]
  52. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 2012; 61:539–542 [View Article] [PubMed]
    [Google Scholar]
  53. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article] [PubMed]
    [Google Scholar]
  54. Borowiec ML. AMAS: a fast tool for alignment manipulation and computing of summary statistics. PeerJ 2016; 4:e1660 [View Article] [PubMed]
    [Google Scholar]
  55. Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD et al. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Mol Biol Evol 2020; 37:1530–1534 [View Article] [PubMed]
    [Google Scholar]
  56. Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol 2005; 187:6258–6264 [View Article] [PubMed]
    [Google Scholar]
  57. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  58. Nawrocki EP, Eddy SR. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 2013; 29:2933–2935 [View Article] [PubMed]
    [Google Scholar]
  59. Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Wezel GP et al. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res 2021; 49:W29–W35 [View Article] [PubMed]
    [Google Scholar]
  60. Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res 2019; 47:D309–D314 [View Article] [PubMed]
    [Google Scholar]
  61. Cantalapiedra CP, Hernández-Plaza A, Letunic I, Bork P, Huerta-Cepas J. eggNOG-mapper v2: Functional Annotation, Orthology Assignments, and Domain Prediction at the Metagenomic Scale. Mol Biol Evol 2021; 38:5825–5829 [View Article] [PubMed]
    [Google Scholar]
  62. Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D et al. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res 2016; 44:D286–93 [View Article] [PubMed]
    [Google Scholar]
  63. Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ et al. Fast Genome-Wide Functional Annotation through Orthology Assignment by eggNOG-Mapper. Mol Biol Evol 2017; 34:2115–2122 [View Article] [PubMed]
    [Google Scholar]
  64. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J et al. BLAST+: architecture and applications. BMC Bioinformatics 2009; 10:1–9 [View Article] [PubMed]
    [Google Scholar]
  65. Miele V, Penel S, Duret L. Ultra-fast sequence clustering from similarity networks with SiLiX. BMC Bioinformatics 2011; 12:116 [View Article] [PubMed]
    [Google Scholar]
  66. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M et al. Versatile and open software for comparing large genomes. Genome Biol 2004; 5:R12 [View Article] [PubMed]
    [Google Scholar]
  67. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R et al. Circos: an information aesthetic for comparative genomics. Genome Res 2009; 19:1639–1645 [View Article] [PubMed]
    [Google Scholar]
  68. R Core Team R: a language and environment for statistical computing; 2020 https://www.R-project.org/
  69. Guy L, Kultima JR, Andersson SGE. genoPlotR: comparative gene and genome visualization in R. Bioinformatics 2010; 26:2334–2335 [View Article] [PubMed]
    [Google Scholar]
  70. Jones P, Binns D, Chang H-Y, Fraser M, Li W et al. InterProScan 5: genome-scale protein function classification. Bioinformatics 2014; 30:1236–1240 [View Article] [PubMed]
    [Google Scholar]
  71. Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG Tools for Functional Characterization of Genome and Metagenome Sequences. J Mol Biol 2016; 428:726–731 [View Article] [PubMed]
    [Google Scholar]
  72. Kanehisa M, Sato Y, Kawashima M. KEGG mapping tools for uncovering hidden features in biological data. Protein Sci 2022; 31:47–53 [View Article] [PubMed]
    [Google Scholar]
  73. Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res 2006; 34:D32–6 [View Article] [PubMed]
    [Google Scholar]
  74. Criscuolo A, Gribaldo S. BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol Biol 2010; 10:210 [View Article] [PubMed]
    [Google Scholar]
  75. Zhu Q, Kosoy M, Dittmar K. HGTector: an automated method facilitating genome-wide discovery of putative horizontal gene transfers. BMC Genomics 2014; 15:717 [View Article] [PubMed]
    [Google Scholar]
  76. Deatherage DE, Barrick JE. Identification of mutations in laboratory-evolved microbes from next-generation sequencing data using breseq. Methods Mol Biol 2014; 1151:165–188 [View Article] [PubMed]
    [Google Scholar]
  77. Wickham H. Elegant Graphics for Data Analysis 2016 [View Article]
    [Google Scholar]
  78. Vanthournout B, Swaegers J, Hendrickx F. Spiders do not escape reproductive manipulations by Wolbachia. BMC Evol Biol 2011; 11:15 [View Article] [PubMed]
    [Google Scholar]
  79. Vanthournout B, Hendrickx F. Hidden suppression of sex ratio distortion suggests Red queen dynamics between Wolbachia and its dwarf spider host. J Evol Biol 2016; 29:1488–1494 [View Article] [PubMed]
    [Google Scholar]
  80. Halter T, Köstlbacher S, Collingro A, Sixt BS, Tönshoff ER et al. Ecology and evolution of chlamydial symbionts of arthropods. ISME Commun 2022; 2:1–11 [View Article]
    [Google Scholar]
  81. Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat Biotechnol 2017; 35:725–731 [View Article] [PubMed]
    [Google Scholar]
  82. Borges V, Nunes A, Ferreira R, Borrego MJ, Gomes JP. Directional evolution of Chlamydia trachomatis towards niche-specific adaptation. J Bacteriol 2012; 194:6143–6153 [View Article] [PubMed]
    [Google Scholar]
  83. Joseph SJ, Didelot X, Rothschild J, de Vries HJC, Morré SA et al. Population genomics of Chlamydia trachomatis: insights on drift, selection, recombination, and population structure. Mol Biol Evol 2012; 29:3933–3946 [View Article] [PubMed]
    [Google Scholar]
  84. Abdelsamed H, Peters J, Byrne GI. Genetic variation in Chlamydia trachomatis and their hosts: impact on disease severity and tissue tropism. Future Microbiol 2013; 8:1129–1146 [View Article] [PubMed]
    [Google Scholar]
  85. Nakamura Y, Kawai S, Yukuhiro F, Ito S, Gotoh T et al. Prevalence of Cardinium bacteria in planthoppers and spider mites and taxonomic revision of “Candidatus Cardinium hertigii” based on detection of a new Cardinium group from biting midges. Appl Environ Microbiol 2009; 75:6757–6763 [View Article] [PubMed]
    [Google Scholar]
  86. Edlund A, Ek K, Breitholtz M, Gorokhova E. Antibiotic-induced change of bacterial communities associated with the copepod Nitocra spinipes. PLoS One 2012; 7:e33107 [View Article] [PubMed]
    [Google Scholar]
  87. Santos-Garcia D, Rollat-Farnier P-A, Beitia F, Zchori-Fein E, Vavre F et al. The genome of Cardinium cBtQ1 provides insights into genome reduction, symbiont motility, and its settlement in Bemisia tabaci. Genome Biol Evol 2014; 6:1013–1030 [View Article] [PubMed]
    [Google Scholar]
  88. Erban T, Klimov P, Molva V, Hubert J. Whole genomic sequencing and sex-dependent abundance estimation of Cardinium sp., a common and hyperabundant bacterial endosymbiont of the American house dust mite, Dermatophagoides farinae. Exp Appl Acarol 2020; 80:363–380 [View Article] [PubMed]
    [Google Scholar]
  89. Moffitt MC, Neilan BA. The expansion of mechanistic and organismic diversity associated with non-ribosomal peptides. FEMS Microbiol Lett 2000; 191:159–167 [View Article] [PubMed]
    [Google Scholar]
  90. Pilgrim J, Ander M, Garros C, Baylis M, Hurst GDD et al. Torix group Rickettsia are widespread in Culicoides biting midges (Diptera: Ceratopogonidae), reach high frequency and carry unique genomic features. Environ Microbiol 2017; 19:4238–4255 [View Article] [PubMed]
    [Google Scholar]
  91. Bordenstein SR, Reznikoff WS. Mobile DNA in obligate intracellular bacteria. Nat Rev Microbiol 2005; 3:688–699 [View Article] [PubMed]
    [Google Scholar]
  92. Moran NA, Plague GR. Genomic changes following host restriction in bacteria. Curr Opin Genet Dev 2004; 14:627–633 [View Article]
    [Google Scholar]
  93. Neupane S, Bonilla SI, Manalo AM, Pelz-Stelinski KS. Complete de novo assembly of Wolbachia endosymbiont of Diaphorina citri Kuwayama (Hemiptera: Liviidae) using long-read genome sequencing. Sci Rep 2022; 12:1–16 [View Article]
    [Google Scholar]
  94. Perlmutter JI, Bordenstein SR, Unckless RL, LePage DP, Metcalf JA et al. The phage gene wmk is a candidate for male killing by a bacterial endosymbiont. PLoS Pathog 2019; 15:e1007936 [View Article] [PubMed]
    [Google Scholar]
  95. Perlmutter JI, Meyers JE, Bordenstein SR. A single synonymous nucleotide change impacts the male-killing phenotype of prophage WO gene wmk. Elife 2021; 10:e67686 Epub ahead of 900 print October 22, 2021 [View Article]
    [Google Scholar]
  96. Nikoh N, Hosokawa T, Moriyama M, Oshima K, Hattori M et al. Evolutionary origin of insect-Wolbachia nutritional mutualism. Proc Natl Acad Sci U S A 2014; 111:10257–10262 [View Article] [PubMed]
    [Google Scholar]
  97. Gerth M, Bleidorn C. Comparative genomics provides a timeframe for Wolbachia evolution and exposes a recent biotin synthesis operon transfer. Nat Microbiol 2016; 2:16241 [View Article] [PubMed]
    [Google Scholar]
  98. Ju J-F, Bing X-L, Zhao D-S, Guo Y, Xi Z et al. Wolbachia supplement biotin and riboflavin to enhance reproduction in planthoppers. ISME J 2020; 14:676–687 [View Article] [PubMed]
    [Google Scholar]
  99. Driscoll TP, Verhoeve VI, Brockway C, Shrewsberry DL, Plumer M et al. Evolution of Wolbachia mutualism and reproductive parasitism: insight from two novel strains that co-infect cat fleas. PeerJ 2020; 8:e10646 [View Article] [PubMed]
    [Google Scholar]
  100. Costa TRD, Felisberto-Rodrigues C, Meir A, Prevost MS, Redzej A et al. Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Nat Rev Microbiol 2015; 13:343–359 [View Article] [PubMed]
    [Google Scholar]
  101. Böck D, Medeiros JM, Tsao H-F, Penz T, Weiss GL et al. In situ architecture, function, and evolution of a contractile injection system. Science 2017; 357:713–717 [View Article] [PubMed]
    [Google Scholar]
  102. Van Melderen L. Toxin-antitoxin systems: why so many, what for?. Curr Opin Microbiol 2010; 13:781–785 [View Article] [PubMed]
    [Google Scholar]
  103. Unterholzner SJ, Poppenberger B, Rozhon W. Toxin-antitoxin systems: Biology, identification, and application. Mob Genet Elements 2013; 3:e26219 [View Article] [PubMed]
    [Google Scholar]
  104. Fraikin N, Goormaghtigh F, Van Melderen L. Type II Toxin-Antitoxin Systems: Evolution and Revolutions. J Bacteriol 2020; 202:e00763-19 [View Article] [PubMed]
    [Google Scholar]
  105. Massey JH, Newton ILG. Diversity and function of arthropod endosymbiont toxins. Trends Microbiol 2022; 30:185–198 [View Article] [PubMed]
    [Google Scholar]
  106. Singhal K, Mohanty S. Comparative genomics reveals the presence of putative toxin–antitoxin system in Wolbachia genomes. Mol Genet Genomics 2018; 293:525–540 [View Article] [PubMed]
    [Google Scholar]
  107. Ferrell JC, Fields KA. A working model for the type III secretion mechanism in Chlamydia. Microbes Infect 2016; 18:84–92 [View Article] [PubMed]
    [Google Scholar]
  108. Mann E, Stouthamer CM, Kelly SE, Dzieciol M, Hunter MS. Transcriptome sequencing reveals novel candidate genes for cardinium hertigii-caused cytoplasmic incompatibility and host-cell interaction. msystems;2. epub ahead of print november 2017. n.d.
  109. Gillespie JJ, Ammerman NC, Dreher-Lesnick SM, Rahman MS, Worley MJ et al. An Anomalous Type IV Secretion System in Rickettsia Is Evolutionarily Conserved. PLoS ONE 2009; 4:e4833 [View Article] [PubMed]
    [Google Scholar]
  110. Pichon S, Bouchon D, Cordaux R, Chen L, Garrett RA et al. Conservation of the Type IV Secretion System throughout Wolbachia evolution. Biochemical and Biophysical Research Communications 2009; 385:557–562 [View Article] [PubMed]
    [Google Scholar]
  111. Ogata H, La Scola B, Audic S, Renesto P, Blanc G et al. Genome sequence of Rickettsia bellii illuminates the role of amoebae in gene exchanges between intracellular pathogens. PLoS Genet 2006; 2:e76 [View Article] [PubMed]
    [Google Scholar]
  112. Gillespie JJ, Joardar V, Williams KP, Driscoll T, Hostetler JB et al. A Rickettsia genome overrun by mobile genetic elements provides insight into the acquisition of genes characteristic of an obligate intracellular lifestyle. J Bacteriol 2012; 194:376–394 [View Article] [PubMed]
    [Google Scholar]
  113. Gillespie JJ, Kaur SJ, Rahman MS, Rennoll-Bankert K, Sears KT et al. Secretome of obligate intracellular Rickettsia. FEMS Microbiol Rev 2015; 39:47–80 [View Article] [PubMed]
    [Google Scholar]
  114. Hagen R, Verhoeve VI, Gillespie JJ, Driscoll TP. Conjugative Transposons and Their Cargo Genes Vary across Natural Populations of Rickettsia buchneri Infecting the Tick Ixodes scapularis. Genome Biol Evol 2018; 10:3218–3229 [View Article] [PubMed]
    [Google Scholar]
  115. Martyn JE, Gomez-Valero L, Buchrieser C. The evolution and role of eukaryotic-like domains in environmental intracellular bacteria: the battle with a eukaryotic cell. FEMS Microbiol Rev 2022; 46:fuac012 [View Article] [PubMed]
    [Google Scholar]
  116. Frank AC. Molecular host mimicry and manipulation in bacterial symbionts. FEMS Microbiol Lett 2019; 366: 01 Feb 2019 [View Article] [PubMed]
    [Google Scholar]
  117. Zeng Z, Fu Y, Guo D, Wu Y, Ajayi OE et al. Bacterial endosymbiont Cardinium cSfur genome sequence provides insights for understanding the symbiotic relationship in Sogatella furcifera host. BMC Genomics 2018; 19:688 [View Article] [PubMed]
    [Google Scholar]
  118. Siozios S, Ioannidis P, Klasson L, Andersson SGE, Braig HR et al. The diversity and evolution of Wolbachia ankyrin repeat domain genes. PLoS One 2013; 8:e55390 [View Article] [PubMed]
    [Google Scholar]
  119. Sinha A, Li Z, Sun L, Carlow CKS. Complete Genome Sequence of the Wolbachia wAlbB Endosymbiont of Aedes albopictus. Genome Biol Evol 2019; 11:706–720 [View Article]
    [Google Scholar]
  120. Siguier P, Filée J, Chandler M. Insertion sequences in prokaryotic genomes. Curr Opin Microbiol 2006; 9:526–531 [View Article] [PubMed]
    [Google Scholar]
  121. Touchon M, Rocha EPC. Causes of insertion sequences abundance in prokaryotic genomes. Mol Biol Evol 2007; 24:969–981 [View Article] [PubMed]
    [Google Scholar]
  122. Latorre A, Manzano-Marín A. Dissecting genome reduction and trait loss in insect endosymbionts. Ann N Y Acad Sci 2017; 1389:52–75 [View Article] [PubMed]
    [Google Scholar]
  123. Plague GR, Dunbar HE, Tran PL, Moran NA. Extensive proliferation of transposable elements in heritable bacterial symbionts. J Bacteriol 2008; 190:777–779 [View Article] [PubMed]
    [Google Scholar]
  124. Newton ILG, Bordenstein SR. Correlations between bacterial ecology and mobile DNA. Curr Microbiol 2011; 62:198–208 [View Article] [PubMed]
    [Google Scholar]
  125. Ros VID, Fleming VM, Feil EJ, Breeuwer JAJ. Diversity and recombination in Wolbachia and Cardinium from Bryobia spider mites. BMC Microbiol 2012; 12 Suppl 1:S13 [View Article] [PubMed]
    [Google Scholar]
  126. Le Clec’h W, Chevalier FD, Genty L, Bertaux J, Bouchon D et al. Cannibalism and predation as paths for horizontal passage of Wolbachia between terrestrial isopods. PLoS One 2013; 8:e60232 [View Article] [PubMed]
    [Google Scholar]
  127. Gonella E, Pajoro M, Marzorati M, Crotti E, Mandrioli M et al. Plant-mediated interspecific horizontal transmission of an intracellular symbiont in insects. Sci Rep 2015; 5:15811 [View Article] [PubMed]
    [Google Scholar]
  128. Li S-J, Ahmed MZ, Lv N, Shi P-Q, Wang X-M et al. Plantmediated horizontal transmission of Wolbachia between whiteflies. ISME J 2017; 11:1019–1028 [View Article] [PubMed]
    [Google Scholar]
  129. Li Y-H, Ahmed MZ, Li S-J, Lv N, Shi P-Q et al. Plant-mediated horizontal transmission of Rickettsia endosymbiont between different whitefly species. FEMS Microbiol Ecol 2017; 93: [View Article] [PubMed]
    [Google Scholar]
  130. Turelli M, Cooper BS, Richardson KM, Ginsberg PS, Peckenpaugh B et al. Rapid Global Spread of wRi-like Wolbachia across Multiple Drosophila. Curr Biol 2018; 28:963–971 [View Article] [PubMed]
    [Google Scholar]
  131. Stouthamer CM, Kelly SE, Mann E, Schmitz-Esser S, Hunter MS. Development of a multi-locus sequence typing system helps reveal the evolution of Cardinium hertigii, a reproductive manipulator symbiont of insects. BMC Microbiol 2019; 19:266 [View Article] [PubMed]
    [Google Scholar]
  132. Park E, Poulin R. Widespread Torix Rickettsia in New Zealand amphipods and the use of blocking primers to rescue host COI sequences. Sci Rep 2020; 10:16842 [View Article] [PubMed]
    [Google Scholar]
  133. El Karkouri K, Pontarotti P, Raoult D, Fournier P-E. Origin and Evolution of Rickettsial Plasmids. PLoS One 2016; 11:e0147492 [View Article] [PubMed]
    [Google Scholar]
  134. El Karkouri K, Ghigo E, Raoult D, Fournier P-E. Genomic evolution and adaptation of arthropod-associated Rickettsia. Sci Rep 2022; 12:3807 [View Article] [PubMed]
    [Google Scholar]
  135. Duron O. Lateral transfers of insertion sequences between Wolbachia, Cardinium and Rickettsia bacterial endosymbionts. Heredity (Edinb) 2013; 111:330–337 [View Article] [PubMed]
    [Google Scholar]
/content/journal/mgen/10.1099/mgen.0.000943
Loading
/content/journal/mgen/10.1099/mgen.0.000943
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error