1887

Abstract

ST372 are widely reported as the major sequence type in dogs globally. They are also a sporadic cause of extraintestinal infections in humans. Despite this, it is unknown whether ST372 strains from dogs and humans represent shared or distinct populations. Furthermore, little is known about genomic traits that might explain the prominence of ST372 in dogs or presence in humans. To address this, we applied a variety of bioinformatics analyses to a global collection of 407 ST372 whole-genome sequences to characterize their epidemiological features, population structure and associated accessory genomes. We confirm that dogs are the dominant host of ST372 and that clusters within the population structure exhibit distinctive O:H types. One phylogenetic cluster, ‘cluster M', comprised almost half of the sequences and showed the divergence of two human-restricted clades that carried different O:H types to the remainder of the cluster. We also present evidence supporting transmission between dogs and humans within different clusters of the phylogeny, including M. We show that multiple acquisitions of the propanediol utilization operon have occurred in clusters dominated by isolates of canine source, possibly linked to diet, whereas loss of the operon and acquisition of K antigen virulence genes characterize human-restricted lineages.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000930
2023-02-08
2024-05-15
Loading full text...

Full text loading...

/deliver/fulltext/mgen/9/2/mgen000930.html?itemId=/content/journal/mgen/10.1099/mgen.0.000930&mimeType=html&fmt=ahah

References

  1. Manges AR, Geum HM, Guo A, Edens TJ, Fibke CD et al. Global extraintestinal pathogenic Escherichia coli (ExPEC) lineages. Clin Microbiol Rev 2019; 32:e00135-18 [View Article]
    [Google Scholar]
  2. Johnson JR, Russo TA. Molecular epidemiology of extraintestinal pathogenic Escherichia coli. EcoSal Plus 2018; 8: [View Article] [PubMed]
    [Google Scholar]
  3. Bogema DR, McKinnon J, Liu M, Hitchick N, Miller N et al. Whole-genome analysis of extraintestinal Escherichia coli sequence type 73 from a single hospital over a 2 year period identified different circulating clonal groups. Microb Genom 2020; 6:e000255 [View Article]
    [Google Scholar]
  4. Cummins ML, Reid CJ, Djordjevic SP. F plasmid lineages in Escherichia coli ST95: implications for host range, antibiotic resistance, and zoonoses. mSystems 2022; 7:e0121221 [View Article]
    [Google Scholar]
  5. Li D, Wyrsch ER, Elankumaran P, Dolejska M, Marenda MS et al. Genomic comparisons of Escherichia coli ST131 from Australia. Microb Genom 2021; 7:000721 [View Article]
    [Google Scholar]
  6. Reid CJ, Cummins ML, Börjesson S, Brouwer MSM, Hasman H et al. A role for ColV plasmids in the evolution of pathogenic Escherichia coli ST58. Nat Commun 2022; 13:683 [View Article] [PubMed]
    [Google Scholar]
  7. Reid CJ, McKinnon J, Djordjevic SP. Clonal ST131-H22 Escherichia coli strains from a healthy pig and a human urinary tract infection carry highly similar resistance and virulence plasmids. Microb Genom 2019; 5: [View Article] [PubMed]
    [Google Scholar]
  8. Jarocki VM, Reid CJ, Chapman TA, Djordjevic SP. Escherichia coli ST302: genomic analysis of virulence potential and antimicrobial resistance mediated by mobile genetic elements. Front Microbiol 2019; 10:3098 [View Article] [PubMed]
    [Google Scholar]
  9. Stephens CM, Adams-Sapper S, Sekhon M, Johnson JR, Riley LW. Genomic analysis of factors associated with low prevalence of antibiotic resistance in extraintestinal pathogenic Escherichia coli sequence type 95 strains. mSphere 2017; 2:e00390-16 [View Article]
    [Google Scholar]
  10. Cusumano CK, Hung CS, Chen SL, Hultgren SJ. 2010; Virulence plasmid harbored by uropathogenic Escherichia coli functions in acute stages of pathogenesis. Infect Immun 78:1457–67
    [Google Scholar]
  11. Moran RA, Hall RM. Evolution of regions containing antibiotic resistance genes in FII-2-FIB-1 ColV-Colla virulence plasmids. Microb Drug Resist 2018; 24:411–421 [View Article]
    [Google Scholar]
  12. Desvaux M, Dalmasso G, Beyrouthy R, Barnich N, Delmas J et al. Pathogenicity factors of genomic islands in intestinal and extraintestinal Escherichia coli. Front Microbiol 2020; 11:2065 [View Article] [PubMed]
    [Google Scholar]
  13. Lloyd AL, Henderson TA, Vigil PD, Mobley HLT. Genomic islands of uropathogenic Escherichia coli contribute to virulence. J Bacteriol 2009; 191:3469–3481 [View Article] [PubMed]
    [Google Scholar]
  14. McMeekin CH, Hill KE, Gibson IR, Bridges JP, Benschop J. Antimicrobial resistance patterns of bacteria isolated from canine urinary samples submitted to a New Zealand veterinary diagnostic laboratory between 2005-2012. N Z Vet J 2017; 65:99–104 [View Article] [PubMed]
    [Google Scholar]
  15. Ukah UV, Glass M, Avery B, Daignault D, Mulvey MR et al. Risk factors for acquisition of multidrug-resistant Escherichia coli and development of community-acquired urinary tract infections. Epidemiol Infect 2018; 146:46–57 [View Article] [PubMed]
    [Google Scholar]
  16. Flament-Simon SC, Toro M, Garcia V, Blanco JE, Blanco M et al. Molecular Characteristics of Extraintestinal Pathogenic E. coli (ExPEC), Uropathogenic E. coli (UPEC), and Multidrug Resistant E. coli Isolated from Healthy Dogs in Spain. Whole Genome Sequencing of Canine ST372 Isolates and Comparison with Human Isolates Causing Extraintestinal Infections. In Microorganisms 8 2020
    [Google Scholar]
  17. Kidsley AK, O’Dea M, Saputra S, Jordan D, Johnson JR et al. Genomic analysis of phylogenetic group B2 extraintestinal pathogenic E. coli causing infections in dogs in Australia. Vet Microbiol 2020; 248:108783 [View Article] [PubMed]
    [Google Scholar]
  18. Kidsley AK, O’Dea M, Ebrahimie E, Mohammadi-Dehcheshmeh M, Saputra S et al. Genomic analysis of fluoroquinolone-susceptible phylogenetic group B2 extraintestinal pathogenic Escherichia coli causing infections in cats. Vet Microbiol 2020; 245:108685 [View Article] [PubMed]
    [Google Scholar]
  19. LeCuyer TE, Byrne BA, Daniels JB, Diaz-Campos DV, Hammac GK et al. Population structure and antimicrobial resistance of canine uropathogenic Escherichia coli. J Clin Microbiol 2018; 56:e00788-18 [View Article]
    [Google Scholar]
  20. Valat C, Drapeau A, Beurlet S, Bachy V, Boulouis HJ et al. Pathogenic Escherichia coli in dogs reveals the predominance of ST372 and the human-associated ST73 extra-intestinal lineages. Front Microbiol 2020; 11:580 [View Article] [PubMed]
    [Google Scholar]
  21. Elankumaran P, Browning GF, Marenda MS, Reid CJ, Djordjevic SP. Close genetic linkage between human and companion animal extraintestinal pathogenic Escherichia coli ST127. Curr Res Microb Sci 2022; 3:100106 [View Article]
    [Google Scholar]
  22. Grönthal T, Österblad M, Eklund M, Jalava J, Nykäsenoja S et al. Sharing more than friendship - transmission of NDM-5 ST167 and CTX-M-9 ST69 Escherichia coli between dogs and humans in a family, Finland, 2015. Euro Surveill 2018; 23:1700497 [View Article]
    [Google Scholar]
  23. Kidsley AK, White RT, Beatson SA, Saputra S, Schembri MA et al. Companion animals are spillover hosts of the multidrug-resistant human extraintestinal Escherichia coli pandemic clones ST131 and ST1193. Front Microbiol 2020; 11:1968 [View Article] [PubMed]
    [Google Scholar]
  24. Nittayasut N, Yindee J, Boonkham P, Yata T, Suanpairintr N et al. Multiple and high-risk clones of extended-spectrum cephalosporin-resistant and blaNDM-5-harbouring uropathogenic Escherichia coli from cats and dogs in Thailand. Antibiotics 2021; 10:1374 [View Article]
    [Google Scholar]
  25. Yasugi M, Hatoya S, Motooka D, Matsumoto Y, Shimamura S et al. Whole-genome analyses of extended-spectrum or AmpC β-lactamase-producing Escherichia coli isolates from companion dogs in Japan. PLoS One 2021; 16:e0246482 [View Article]
    [Google Scholar]
  26. Rodríguez-González MJ, Jiménez-Pearson MA, Duarte F, Poklepovich T, Campos J et al. Multidrug-Resistant CTX-M and CMY-2 producing Escherichia coli isolated from healthy household dogs from the great metropolitan area, Costa Rica. Microb Drug Resist 2020; 26:1421–1428 [View Article] [PubMed]
    [Google Scholar]
  27. Ahlstrom CA, Bonnedahl J, Woksepp H, Hernandez J, Olsen B et al. Acquisition and dissemination of cephalosporin-resistant E. coli in migratory birds sampled at an Alaska landfill as inferred through genomic analysis. Sci Rep 2018; 8:7361 [View Article] [PubMed]
    [Google Scholar]
  28. Blyton MDJ, Gordon DM. Genetic attributes of E. coli isolates from chlorinated drinking water. PLoS One 2017; 12:e0169445 [View Article]
    [Google Scholar]
  29. Martak D, Henriot CP, Broussier M, Couchoud C, Valot B et al. High prevalence of human-associated Escherichia coli in wetlands located in Eastern France. Front Microbiol 2020; 11:552566 [View Article] [PubMed]
    [Google Scholar]
  30. Mbanga J, Amoako DG, Abia ALK, Allam M, Ismail A et al. Genomic insights of multidrug-resistant Escherichia coli from wastewater sources and their association with clinical pathogens in South Africa. Front Vet Sci 2021; 8:636715 [View Article] [PubMed]
    [Google Scholar]
  31. Nowak K, Fahr J, Weber N, Lübke-Becker A, Semmler T et al. Highly diverse and antimicrobial susceptible Escherichia coli display a naïve bacterial population in fruit bats from the Republic of Congo. PLoS One 2017; 12:e0178146 [View Article]
    [Google Scholar]
  32. Wang Y, Zhou J, Li X, Ma L, Cao X et al. Genetic diversity, antimicrobial resistance and extended-spectrum β-lactamase type of Escherichia coli isolates from chicken, dog, pig and yak in Gansu and Qinghai Provinces, China. J Glob Antimicrob Resist 2020; 22:726–732 [View Article]
    [Google Scholar]
  33. Elankumaran P, Cummins ML, Browning GF, Marenda MS, Reid CJ et al. Genomic and temporal trends in canine ExPEC reflect those of human ExPEC. Microbiol Spectr 2022; 10:e0129122 [View Article]
    [Google Scholar]
  34. Gaio D, To J, Liu M, Monahan L, Anantanawat K et al. Hackflex: low cost illumina sequencing library construction for high sample counts. bioRxiv 2019 [View Article]
    [Google Scholar]
  35. Köster J, Rahmann S. Snakemake--a scalable bioinformatics workflow engine. Bioinformatics 2012; 28:2520–2522 [View Article] [PubMed]
    [Google Scholar]
  36. Jolley KA, Maiden MCJ. BIGSdb: scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics 2010; 11:595 [View Article] [PubMed]
    [Google Scholar]
  37. Zankari E, Allesøe R, Joensen KG, Cavaco LM, Lund O et al. PointFinder: a novel web tool for WGS-based detection of antimicrobial resistance associated with chromosomal point mutations in bacterial pathogens. J Antimicrob Chemother 2017; 72:2764–2768 [View Article] [PubMed]
    [Google Scholar]
  38. Carattoli A, Hasman H. PlasmidFinder and in silico pMLST: identification and typing of plasmid replicons in whole-genome sequencing (WGS). Methods Mol Biol 2020; 2075:285–294 [View Article] [PubMed]
    [Google Scholar]
  39. Chen L, Zheng D, Liu B, Yang J, Jin Q. VFDB 2016: hierarchical and refined dataset for big data analysis--10 years on. Nucleic Acids Res 2016; 44:D694–7 [View Article]
    [Google Scholar]
  40. Ingle DJ, Valcanis M, Kuzevski A, Tauschek M, Inouye M et al. In silico serotyping of E. coli from short read data identifies limited novel O-loci but extensive diversity of O:H serotype combinations within and between pathogenic lineages. Microb Genom 2016; 2:e000064 [View Article]
    [Google Scholar]
  41. Jia B, Raphenya AR, Alcock B, Waglechner N, Guo P et al. CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res 2017; 45:D566–D573 [View Article]
    [Google Scholar]
  42. Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res 2006; 34:D32–6 [View Article]
    [Google Scholar]
  43. Liu CM, Stegger M, Aziz M, Johnson TJ, Waits K. Escherichia coli ST131-H22 as a foodborne uropathogen. mBio 2018; 9:e00470-18 [View Article]
    [Google Scholar]
  44. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015; 31:3691–3693 [View Article] [PubMed]
    [Google Scholar]
  45. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article] [PubMed]
    [Google Scholar]
  46. Page AJ, Taylor B, Delaney AJ, Soares J, Seemann T et al. SNP-sites: rapid efficient extraction of SNPs from multi-FASTA alignments. Microb Genom 2016; 2:e000056 [View Article]
    [Google Scholar]
  47. Tonkin-Hill G, Lees JA, Bentley SD, Frost SDW, Corander J. Fast hierarchical Bayesian analysis of population structure. Nucleic Acids Res 2019; 47:5539–5549 [View Article] [PubMed]
    [Google Scholar]
  48. Brynildsrud O, Bohlin J, Scheffer L, Eldholm V. Rapid scoring of genes in microbial pan-genome-wide association studies with Scoary. Genome Biol 2016; 17:238 [View Article] [PubMed]
    [Google Scholar]
  49. Bertelli C, Laird MR, Williams KP, Lau BY. Simon Fraser University Research Computing Group IslandViewer 4: expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Res 2017; 45:W30–W35 [View Article]
    [Google Scholar]
  50. Haudiquet M, Buffet A, Rendueles O, Rocha EPC. Interplay between the cell envelope and mobile genetic elements shapes gene flow in populations of the nosocomial pathogen Klebsiella pneumoniae. PLoS Biol 2021; 19:e3001276 [View Article]
    [Google Scholar]
  51. Tanner JR, Kingsley RA. Evolution of Salmonella within hosts. Trends Microbiol 2018; 26:986–998 [View Article] [PubMed]
    [Google Scholar]
  52. Brett KN, Ramachandran V, Hornitzky MA, Bettelheim KA, Walker MJ et al. stx1c Is the most common Shiga toxin 1 subtype among Shiga toxin-producing Escherichia coli isolates from sheep but not among isolates from cattle. J Clin Microbiol 2003; 41:926–936 [View Article] [PubMed]
    [Google Scholar]
  53. Djordjevic SP, Ramachandran V, Bettelheim KA, Vanselow BA, Holst P et al. Serotypes and virulence gene profiles of shiga toxin-producing Escherichia coli strains isolated from feces of pasture-fed and lot-fed sheep. Appl Environ Microbiol 2004; 70:3910–3917 [View Article] [PubMed]
    [Google Scholar]
  54. Ludden C, Coll F, Gouliouris T, Restif O, Blane B et al. Defining nosocomial transmission of Escherichia coli and antimicrobial resistance genes: a genomic surveillance study. Lancet Microbe 2021; 2:e472–e480 [View Article] [PubMed]
    [Google Scholar]
  55. Li J, Bi Z, Ma S, Chen B, Cai C et al. Inter-host transmission of carbapenemase-producing Escherichia coli among humans and backyard animals. Environ Health Perspect 2019; 127:107009 [View Article] [PubMed]
    [Google Scholar]
  56. Toombs-Ruane LJ, Benschop J, French NP, Biggs PJ, Midwinter AC et al. Carriage of extended-spectrum-beta-lactamase- and AmpC beta-lactamase-producing Escherichia coli strains from humans and pets in the same households. Appl Environ Microbiol 2020; 86:e01613-20 [View Article]
    [Google Scholar]
  57. Bonnet R, Beyrouthy R, Haenni M, Nicolas-Chanoine M-H, Dalmasso G et al. Host colonization as a major evolutionary force favoring the diversity and the emergence of the worldwide multidrug-resistant Escherichia coli ST131. mBio 2021; 12:e0145121 [View Article]
    [Google Scholar]
  58. Bobik TA, Havemann GD, Busch RJ, Williams DS, Aldrich HC. The propanediol utilization (pdu) operon of Salmonella enterica serovar typhimurium LT2 includes genes necessary for formation of polyhedral organelles involved in coenzyme B(12)-dependent 1, 2-propanediol degradation. J Bacteriol 1999; 181:5967–5975 [View Article] [PubMed]
    [Google Scholar]
  59. Kim EY, Jakobson CM, Tullman-Ercek D. Engineering transcriptional regulation to control Pdu microcompartment formation. PLoS One 2014; 9:e113814 [View Article]
    [Google Scholar]
  60. Shu L, Wang Q, Jiang W, Tišma M, Oh B et al. The roles of diol dehydratase from pdu operon on glycerol catabolism in Klebsiella pneumoniae. Enzyme Microb Technol 2022; 157:110021 [View Article] [PubMed]
    [Google Scholar]
  61. Trifunović D, Moon J, Poehlein A, Daniel R, Müller V. Growth of the acetogenic bacterium Acetobacterium woodii on glycerol and dihydroxyacetone. Environ Microbiol 2021; 23:2648–2658 [View Article] [PubMed]
    [Google Scholar]
  62. Stewart KL, Stewart AM, Bobik TA. 2020; Prokaryotic organelles: bacterial microcompartments in E. coli and Salmonella. EcoSal Plus 9:
    [Google Scholar]
  63. Faber F, Thiennimitr P, Spiga L, Byndloss MX, Litvak Y et al. Respiration of microbiota-derived 1,2-propanediol drives Salmonella expansion during colitis. PLoS Pathog 2017; 13:e1006129 [View Article]
    [Google Scholar]
  64. Harvey PC, Watson M, Hulme S, Jones MA, Lovell M et al. Salmonella enterica serovar typhimurium colonizing the lumen of the chicken intestine grows slowly and upregulates a unique set of virulence and metabolism genes. Infect Immun 2011; 79:4105–4121 [View Article] [PubMed]
    [Google Scholar]
  65. Klumpp J, Fuchs TM. Identification of novel genes in genomic islands that contribute to Salmonella typhimurium replication in macrophages. Microbiology 2007; 153:1207–1220 [View Article]
    [Google Scholar]
  66. Anast JM, Bobik TA, Schmitz-Esser S. The cobalamin-dependent gene cluster of Listeria monocytogenes: implications for virulence, stress response, and food safety. Front Microbiol 2020; 11:601816 [View Article] [PubMed]
    [Google Scholar]
  67. Graf L, Wu K, Wilson JW. Transfer and analysis of Salmonella pdu genes in a range of Gram-negative bacteria demonstrate exogenous microcompartment expression across a variety of species. Microb Biotechnol 2018; 11:199–210 [View Article] [PubMed]
    [Google Scholar]
  68. Valcek A, Sismova P, Nesporova K, Overballe-Petersen S, Bitar I et al. Horsing around: Escherichia coli ST1250 of equine origin harboring epidemic IncHI1/ST9 plasmid with bla CTX-M-1 and an operon for short-chain fructooligosaccharide metabolism. Antimicrob Agents Chemother 2021; 65:e02556–20 [View Article]
    [Google Scholar]
  69. King MR, Vimr RP, Steenbergen SM, Spanjaard L, Plunkett G 3rd et al. Escherichia coli K1-specific bacteriophage CUS-3 distribution and function in phase-variable capsular polysialic acid O acetylation. J Bacteriol 2007; 189:6447–6456 [View Article] [PubMed]
    [Google Scholar]
  70. Aldawood E, Roberts IS. Regulation of Escherichia coli group 2 capsule gene expression: a mini review and update. Front Microbiol 2022; 13:858767 [View Article] [PubMed]
    [Google Scholar]
  71. McCarthy AJ, Stabler RA, Taylor PW. Genome-wide identification by transposon insertion sequencing of Escherichia coli K1 genes essential for in vitro growth, gastrointestinal colonizing capacity, and survival in serum. J Bacteriol 2018; 200:e00698-17 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000930
Loading
/content/journal/mgen/10.1099/mgen.0.000930
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error