1887

Abstract

The genus Escherichia is composed of Escherichia albertii, E. fergusonii, five cryptic Escherichia clades and E. coli sensu stricto. Furthermore, the E. coli species can be divided into seven main phylogroups termed A, B1, B2, C, D, E and F. As specific lifestyles and/or hosts can be attributed to these species/phylogroups, their identification is meaningful for epidemiological studies. Classical phenotypic tests fail to identify non-sensu stricto E. coli as well as phylogroups. Clermont and colleagues have developed PCR assays that allow the identification of most of these species/phylogroups, the triplex/quadruplex PCR for E. coli phylogroup determination being the most popular. With the growing availability of whole genome sequences, we have developed the ClermonTyping method and its associated web-interface, the ClermonTyper, that allows a given strain sequence to be assigned to E. albertii, E. fergusonii, Escherichia clades I–V, E. coli sensu stricto as well as to the seven main E. coli phylogroups. The ClermonTyping is based on the concept of in vitro PCR assays and maintains the principles of ease of use and speed that prevailed during the development of the in vitro assays. This in silico approach shows 99.4 % concordance with the in vitro PCR assays and 98.8 % with the Mash genome-clustering tool. The very few discrepancies result from various errors occurring mainly from horizontal gene transfers or SNPs in the primers. We propose the ClermonTyper as a freely available resource to the scientific community at: http://clermontyping.iame-research.center/.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000192
2018-06-19
2024-03-19
Loading full text...

Full text loading...

/deliver/fulltext/mgen/4/7/mgen000192.html?itemId=/content/journal/mgen/10.1099/mgen.0.000192&mimeType=html&fmt=ahah

References

  1. Clermont O, Gordon DM, Brisse S, Walk ST, Denamur E. Characterization of the cryptic Escherichia lineages: rapid identification and prevalence. Environ Microbiol 2011; 13:2468–2477 [View Article][PubMed]
    [Google Scholar]
  2. Walk ST. The "Cryptic" Escherichia . EcoSal Plus 2015; 6: [View Article][PubMed]
    [Google Scholar]
  3. Walk ST, Alm EW, Gordon DM, Ram JL, Toranzos GA et al. Cryptic lineages of the genus Escherichia . Appl Environ Microbiol 2009; 75:6534–6544 [View Article][PubMed]
    [Google Scholar]
  4. Luo C, Walk ST, Gordon DM, Feldgarden M, Tiedje JM et al. Genome sequencing of environmental Escherichia coli expands understanding of the ecology and speciation of the model bacterial species. Proc Natl Acad Sci USA 2011; 108:7200–7205 [View Article][PubMed]
    [Google Scholar]
  5. Clermont O, Christenson JK, Denamur E, Gordon DM. The Clermont Escherichia coli phylo-typing method revisited: improvement of specificity and detection of new phylo-groups. Environ Microbiol Rep 2013; 5:58–65 [View Article][PubMed]
    [Google Scholar]
  6. Gordon DM, Cowling A. The distribution and genetic structure of Escherichia coli in Australian vertebrates: host and geographic effects. Microbiology 2003; 149:3575–3586 [View Article][PubMed]
    [Google Scholar]
  7. Ingle DJ, Clermont O, Skurnik D, Denamur E, Walk ST et al. Biofilm formation by and thermal niche and virulence characteristics of Escherichia spp. Appl Environ Microbiol 2011; 77:2695–2700 [View Article][PubMed]
    [Google Scholar]
  8. Tenaillon O, Skurnik D, Picard B, Denamur E. The population genetics of commensal Escherichia coli . Nat Rev Microbiol 2010; 8:207–217 [View Article]
    [Google Scholar]
  9. Wirth T, Falush D, Lan R, Colles F, Mensa P et al. Sex and virulence in Escherichia coli: an evolutionary perspective. Mol Microbiol 2006; 60:1136–1151 [View Article][PubMed]
    [Google Scholar]
  10. Jaureguy F, Landraud L, Passet V, Diancourt L, Frapy E et al. Phylogenetic and genomic diversity of human bacteremic Escherichia coli strains. BMC Genomics 2008; 9:560–14 [View Article][PubMed]
    [Google Scholar]
  11. Clermont O, Bonacorsi S, Bingen E. Rapid and simple determination of the Escherichia coli phylogenetic group. Appl Environ Microbiol 2000; 66:4555–4558 [View Article][PubMed]
    [Google Scholar]
  12. Smati M, Clermont O, Bleibtreu A, Fourreau F, David A et al. Quantitative analysis of commensal Escherichia coli populations reveals host-specific enterotypes at the intra-species level. Microbiologyopen 2015; 4:604–615 [View Article][PubMed]
    [Google Scholar]
  13. Lindsey RL, Garcia-Toledo L, Fasulo D, Gladney LM, Strockbine N. Multiplex polymerase chain reaction for identification of Escherichia coli, Escherichia albertii and Escherichia fergusonii . J Microbiol Methods 2017; 140:1–4 [View Article][PubMed]
    [Google Scholar]
  14. Moriel DG, Tan L, Goh KG, Phan MD, Ipe DS et al. A novel protective vaccine antigen from the core Escherichia coli genome. mSphere 2016; 1:e00326-16 [View Article][PubMed]
    [Google Scholar]
  15. Gangiredla J, Mammel MK, Barnaba TJ, Tartera C, Gebru ST et al. Species-wide collection of Escherichia coli isolates for examination of genomic diversity. Genome Announc 2017; 5:e01321-17 [View Article][PubMed]
    [Google Scholar]
  16. Kallonen T, Brodrick HJ, Harris SR, Corander J, Brown NM et al. Systematic longitudinal survey of invasive Escherichia coli in England demonstrates a stable population structure only transiently disturbed by the emergence of ST131. Genome Res 2017; 27:1437–1449 [View Article][PubMed]
    [Google Scholar]
  17. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [View Article][PubMed]
    [Google Scholar]
  18. Didelot X, Méric G, Falush D, Darling AE. Impact of homologous and non-homologous recombination in the genomic evolution of Escherichia coli . BMC Genomics 2012; 13:256 [View Article][PubMed]
    [Google Scholar]
  19. Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH et al. Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol 2016; 17:132 [View Article][PubMed]
    [Google Scholar]
  20. Phillippy A, Ondov B. 2017; Mash Screen: what’s in my sequencing run?. https://genomeinformatics.github.io/mash-screen/ [accessed 12 February 2018]
  21. Ochman H, Selander RK. Standard reference strains of Escherichia coli from natural populations. J Bacteriol 1984; 157:690–693[PubMed]
    [Google Scholar]
  22. Picard B, Garcia JS, Gouriou S, Duriez P, Brahimi N et al. The link between phylogeny and virulence in Escherichia coli extraintestinal infection. Infect Immun 1999; 67:546–553[PubMed]
    [Google Scholar]
  23. Bleibtreu A, Clermont O, Darlu P, Glodt J, Branger C et al. The rpoS gene is predominantly inactivated during laboratory storage and undergoes source-sink evolution in Escherichia coli species. J Bacteriol 2014; 196:4276–4284 [View Article][PubMed]
    [Google Scholar]
  24. Clermont O, Denamur E, Gordon D. Guide to the various phylogenetic classification schemes for Escherichia coli and the correspondence among schemes. Microbiol 2015; 161:980–988 [View Article]
    [Google Scholar]
  25. Warwick Medical School 2018; Enterobase. http://enterobase.warwick.ac.uk/ [accessed 12 February 2018]
  26. Lu S, Jin D, Wu S, Yang J, Lan R et al. Insights into the evolution of pathogenicity of Escherichia coli from genomic analysis of intestinal E. coli of Marmota himalayana in Qinghai-Tibet plateau of China. Emerg Microbes Infect 2016; 5:e122 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000192
Loading
/content/journal/mgen/10.1099/mgen.0.000192
Loading

Data & Media loading...

Supplements

Supplementary File 1

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error