Skip to content
1887

Abstract

is an emerging zoonotic swine pathogen which can cause severe infections in humans. In March 2021, an outbreak of infections with 19 confirmed cases of septicemia and meningitis leading to two deaths, occurred in Nakhon Ratchasima province, Thailand. We characterized the outbreak through an epidemiological investigation combined with Illumina and Nanopore whole genome sequencing (WGS). The source of the outbreak was traced back to a raw pork dish prepared from a single pig during a Buddhist ceremony attended by 241 people. WGS analysis revealed that a single serotype 2 strain belonging to a novel sequence type (ST) of the emergent Thai zoonotic clade CC233/379, was responsible for the infections. The outbreak clone grouped together with other Thai zoonotic strains from CC233/379 and CC104 in a global phylogeny and capsule switching events between serotype 2 zoonotic strains and serotype 7 porcine strains were identified. The outbreak strain showed reduced susceptibility to penicillin corresponding with mutations in key residues in the penicillin binding proteins (PBPs). Furthermore, the outbreak strain was resistant to tetracycline, erythromycin, clindamycin, linezolid and chloramphenicol, having acquired an integrative and conjugative element (ICE) carrying resistance genes and as well as a transposon from the IS1216 family carrying and . This investigation demonstrates that multi-drug resistant zoonotic lineages of which pose a threat to human health continue to emerge.

Funding
This study was supported by the:
  • Health~Holland (Award LSHM19137)
    • Principle Award Recipient: ConstanceSchultsz
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000952
2023-02-15
2025-05-22
Loading full text...

Full text loading...

/deliver/fulltext/mgen/9/2/mgen000952.html?itemId=/content/journal/mgen/10.1099/mgen.0.000952&mimeType=html&fmt=ahah

References

  1. Ho DTN, Le TPT, Wolbers M, Cao QT, Nguyen VMH et al. Risk factors of Streptococcus suis infection in Vietnam. A case-control study. PLoS One 2011; 6:e17604 [View Article]
    [Google Scholar]
  2. Takeuchi D, Kerdsin A, Akeda Y, Chiranairadul P, Loetthong P et al. Impact of a food safety campaign on Streptococcus suis infection in humans in Thailand. Am J Trop Med Hyg 2017; 96:1370–1377 [View Article] [PubMed]
    [Google Scholar]
  3. Weinert LA, Chaudhuri RR, Wang J, Peters SE, Corander J et al. Genomic signatures of human and animal disease in the zoonotic pathogen Streptococcus suis. Nat Commun 2015; 6:6740 [View Article] [PubMed]
    [Google Scholar]
  4. Huong VTL, Ha N, Huy NT, Horby P, Nghia HDT et al. Epidemiology, clinical manifestations, and outcomes of Streptococcus suis infection in humans. Emerg Infect Dis 2014; 20:1105–1114 [View Article]
    [Google Scholar]
  5. van Samkar A, Brouwer MC, Schultsz C, van der Ende A, van de Beek D. Streptococcus suis meningitis: a systematic review and meta-analysis. PLoS Negl Trop Dis 2015; 9:e0004191 [View Article]
    [Google Scholar]
  6. Yu H, Jing H, Chen Z, Zheng H, Zhu X et al. Human Streptococcus suis outbreak, Sichuan, China. Emerg Infect Dis 2006; 12:914–920 [View Article]
    [Google Scholar]
  7. Schultsz C, Jansen E, Keijzers W, Rothkamp A, Duim B et al. Differences in the population structure of invasive Streptococcus suis strains isolated from pigs and from humans in The Netherlands. PLoS One 2012; 7:e33854 [View Article]
    [Google Scholar]
  8. Okura M, Osaki M, Nomoto R, Arai S, Osawa R et al. Current taxonomical situation of Streptococcus suis. Pathogens 2016; 5:45 [View Article]
    [Google Scholar]
  9. Goyette-Desjardins G, Auger J-P, Dolbec D, Vinogradov E, Okura M et al. Comparative study of immunogenic properties of purified capsular polysaccharides from Streptococcus suis serotypes 3, 7, 8, and 9: the serotype 3 polysaccharide induces an opsonizing IgG response. Infect Immun 2020; 88:e00377-20 [View Article]
    [Google Scholar]
  10. Arends JP, Zanen HC. Meningitis caused by Streptococcus suis in humans. Rev Infect Dis 1988; 10:131–137 [View Article] [PubMed]
    [Google Scholar]
  11. Gustavsson C, Rasmussen M. Septic arthritis caused by Streptococcus suis serotype 5 in pig farmer. Emerg Infect Dis 2014; 20:489–490 [View Article]
    [Google Scholar]
  12. Kerdsin A, Hatrongjit R, Gottschalk M, Takeuchi D, Hamada S et al. Emergence of Streptococcus suis serotype 9 infection in humans. J Microbiol Immunol Infect 2017; 50:545–546 [View Article] [PubMed]
    [Google Scholar]
  13. Kerdsin A, Oishi K, Sripakdee S, Boonkerd N, Polwichai P et al. Clonal dissemination of human isolates of Streptococcus suis serotype 14 in Thailand. J Med Microbiol 2009; 58:1508–1513 [View Article] [PubMed]
    [Google Scholar]
  14. Nghia HDT, Hoa NT, Linh LD, Campbell J, Diep TS et al. Human case of Streptococcus suis serotype 16 infection. Emerg Infect Dis 2008; 14:155–157 [View Article]
    [Google Scholar]
  15. Callejo R, Prieto M, Salamone F, Auger J-P, Goyette-Desjardins G et al. Atypical Streptococcus suis in man, Argentina, 2013. Emerg Infect Dis 2014; 20:500–502 [View Article]
    [Google Scholar]
  16. Kerdsin A, Dejsirilert S, Sawanpanyalert P, Boonnark A, Noithachang W et al. Sepsis and spontaneous bacterial peritonitis in Thailand. Lancet 2011; 378:960 [View Article] [PubMed]
    [Google Scholar]
  17. Hatrongjit R, Kerdsin A, Gottschalk M, Takeuchi D, Hamada S et al. First human case report of sepsis due to infection with Streptococcus suis serotype 31 in Thailand. BMC Infect Dis 2015; 15:392 [View Article] [PubMed]
    [Google Scholar]
  18. Kerdsin A, Takeuchi D, Nuangmek A, Akeda Y, Gottschalk M et al. Genotypic comparison between Streptococcus suis isolated from pigs and humans in Thailand. Pathogens 2020; 9:50 [View Article] [PubMed]
    [Google Scholar]
  19. Segura M, Aragon V, Brockmeier SL, Gebhart C, Greeff A de et al. Update on Streptococcus suis research and prevention in the era of antimicrobial restriction: 4th international workshop on S. suis. Pathogens 2020; 9:374 [View Article]
    [Google Scholar]
  20. Goyette-Desjardins G, Auger J-P, Xu J, Segura M, Gottschalk M. Streptococcus suis, an important pig pathogen and emerging zoonotic agent-an update on the worldwide distribution based on serotyping and sequence typing. Emerg Microbes Infect 2014; 3:e45 [View Article] [PubMed]
    [Google Scholar]
  21. Willemse N, Howell KJ, Weinert LA, Heuvelink A, Pannekoek Y et al. An emerging zoonotic clone in the Netherlands provides clues to virulence and zoonotic potential of Streptococcus suis. Sci Rep 2016; 6:28984 [View Article] [PubMed]
    [Google Scholar]
  22. Kerdsin A, Akeda Y, Takeuchi D, Dejsirilert S, Gottschalk M et al. Genotypic diversity of Streptococcus suis strains isolated from humans in Thailand. Eur J Clin Microbiol Infect Dis 2018; 37:917–925 [View Article] [PubMed]
    [Google Scholar]
  23. Kerdsin A, Dejsirilert S, Puangpatra P, Sripakdee S, Chumla K et al. Genotypic profile of Streptococcus suis serotype 2 and clinical features of infection in humans, Thailand. Emerg Infect Dis 2011; 17:835–842 [View Article] [PubMed]
    [Google Scholar]
  24. Kittiwan N, Calland JK, Mourkas E, Hitchings MD, Murray S et al. Non-serotype 2 isolates from healthy pigs are a potential zoonotic reservoir of Streptococcus suis genetic diversity and antimicrobial resistance. Microbiology 2021 [View Article]
    [Google Scholar]
  25. Bamphensin N, Chopjitt P, Hatrongjit R, Boueroy P, Fittipaldi N et al. Non-Penicillin-Susceptible Streptococcus suis Isolated from Humans. Pathogens 2021; 10:1178 [View Article] [PubMed]
    [Google Scholar]
  26. Sukto C, Kaeosang O. Investigation of outbreak Streptococcus suis in ordination ceremony in Ban Kao sub-district, Dan Khun Thod District during March 28-April 11, 2021. Outbreak Investigation Report (In Thai) Thailand: Disease Control Department, Ministry of Public Health; 2021
    [Google Scholar]
  27. Kerdsin A, Akeda Y, Hatrongjit R, Detchawna U, Sekizaki T et al. Streptococcus suis serotyping by a new multiplex PCR. J Med Microbiol 2014; 63:824–830 [View Article] [PubMed]
    [Google Scholar]
  28. Matiasovic J, Zouharova M, Nedbalcova K, Kralova N, Matiaskova K et al. Resolution of Streptococcus suis Serotypes 1/2 versus 2 and 1 versus 14 by PCR-Restriction Fragment Length Polymorphism Method. J Clin Microbiol 2020; 58:e00480-20 [View Article] [PubMed]
    [Google Scholar]
  29. Muckart DJJ, Bhagwanjee S. American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference definitions of the systemic inflammatory response syndrome and allied disorders in relation to critically injured patients. Crit Care Med 1997; 25:1789–1795 [View Article]
    [Google Scholar]
  30. King SJ, Leigh JA, Heath PJ, Luque I, Tarradas C et al. Development of a multilocus sequence typing scheme for the pig pathogen Streptococcus suis: identification of virulent clones and potential capsular serotype exchange. J Clin Microbiol 2002; 40:3671–3680 [View Article] [PubMed]
    [Google Scholar]
  31. Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018; 34:i884–i890 [View Article] [PubMed]
    [Google Scholar]
  32. Wood DE, Lu J, Langmead B. Improved metagenomic analysis with Kraken 2. Genome Biol 2019; 20:257 [View Article] [PubMed]
    [Google Scholar]
  33. Athey TBT, Teatero S, Lacouture S, Takamatsu D, Gottschalk M et al. Determining Streptococcus suis serotype from short-read whole-genome sequencing data. BMC Microbiol 2016; 16:162 [View Article] [PubMed]
    [Google Scholar]
  34. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 2018; 9:5114 [View Article] [PubMed]
    [Google Scholar]
  35. Prjibelski A, Antipov D, Meleshko D, Lapidus A, Korobeynikov A. Using SPAdes De Novo Assembler. Curr Protoc Bioinformatics 2020; 70:e102 [View Article]
    [Google Scholar]
  36. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13:e1005595 [View Article] [PubMed]
    [Google Scholar]
  37. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013; 29:1072–1075 [View Article] [PubMed]
    [Google Scholar]
  38. Wick RR, Schultz MB, Zobel J, Holt KE. Bandage: interactive visualization of de novo genome assemblies. Bioinformatics 2015; 31:3350–3352 [View Article] [PubMed]
    [Google Scholar]
  39. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  40. Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 2018; 34:3094–3100 [View Article] [PubMed]
    [Google Scholar]
  41. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J et al. The sequence alignment/Map format and SAMtools. Bioinformatics 2009; 25:2078–2079 [View Article] [PubMed]
    [Google Scholar]
  42. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article] [PubMed]
    [Google Scholar]
  43. Page AJ, Taylor B, Delaney AJ, Soares J, Seemann T et al. SNP-sites: rapid efficient extraction of SNPs from multi-FASTA alignments. Microb Genom 2016; 2:e000056 [View Article]
    [Google Scholar]
  44. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 2017; 14:587–589 [View Article] [PubMed]
    [Google Scholar]
  45. Didelot X, Wilson DJ. ClonalFrameML: efficient inference of recombination in whole bacterial genomes. PLOS Comput Biol 2015; 11:e1004041 [View Article]
    [Google Scholar]
  46. Roodsant TJ, Van Der Putten BCL, Tamminga SM, Schultsz C, Van Der Ark KCH. Identification of Streptococcus suis putative zoonotic virulence factors: a systematic review and genomic meta-analysis. Virulence 2021; 12:2787–2797 [View Article] [PubMed]
    [Google Scholar]
  47. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015; 31:3691–3693 [View Article] [PubMed]
    [Google Scholar]
  48. Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res 2021; 49:W293–W296 [View Article] [PubMed]
    [Google Scholar]
  49. Feldgarden M, Brover V, Gonzalez-Escalona N, Frye JG, Haendiges J et al. AMRFinderPlus and the reference gene catalog facilitate examination of the genomic links among antimicrobial resistance, stress response, and virulence. Sci Rep 2021; 11:12728 [View Article] [PubMed]
    [Google Scholar]
  50. Hadjirin NF, Miller EL, Murray GGR, Yen PLK, Phuc HD et al. Large-scale genomic analysis of antimicrobial resistance in the zoonotic pathogen Streptococcus suis. BMC Biol 2021; 19:191 [View Article] [PubMed]
    [Google Scholar]
  51. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article] [PubMed]
    [Google Scholar]
  52. Gouy M, Guindon S, Gascuel O. SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 2010; 27:221–224 [View Article] [PubMed]
    [Google Scholar]
  53. Tonkin-Hill G, MacAlasdair N, Ruis C, Weimann A, Horesh G et al. Producing polished prokaryotic pangenomes with the Panaroo pipeline. Genome Biol 2020; 21:180 [View Article] [PubMed]
    [Google Scholar]
  54. Liu M, Li X, Xie Y, Bi D, Sun J et al. ICEberg 2.0: an updated database of bacterial integrative and conjugative elements. Nucleic Acids Res 2019; 47:D660–D665 [View Article] [PubMed]
    [Google Scholar]
  55. Arndt D, Grant JR, Marcu A, Sajed T, Pon A et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res 2016; 44:W16–21 [View Article] [PubMed]
    [Google Scholar]
  56. Carver T, Harris SR, Berriman M, Parkhill J, McQuillan JA. Artemis: an integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinformatics 2012; 28:464–469 [View Article] [PubMed]
    [Google Scholar]
  57. Gilchrist CLM, Chooi Y-H, Robinson P. clinker & clustermap.js: automatic generation of gene cluster comparison figures. Bioinformatics 2021; 37:2473–2475 [View Article] [PubMed]
    [Google Scholar]
  58. Davis MW, Jorgensen EM. ApE, a plasmid editor: a freely available DNA manipulation and visualization program. Front Bioinform 2022; 2:818619 [View Article] [PubMed]
    [Google Scholar]
  59. NCBI Resource Coordinators Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 2013; 41:D8–D20 [View Article]
    [Google Scholar]
  60. Wang J, Kong D, Zhang S, Jiang H, Zheng Y et al. Interaction of fibrinogen and muramidase-released protein promotes the development of Streptococcus suis meningitis. Front Microbiol 2015; 6:1001 [View Article] [PubMed]
    [Google Scholar]
  61. Kong D, Chen Z, Wang J, Lv Q, Jiang H et al. Interaction of factor H-binding protein of Streptococcus suis with globotriaosylceramide promotes the development of meningitis. Virulence 2017; 8:1290–1302 [View Article] [PubMed]
    [Google Scholar]
  62. Athey TBT, Teatero S, Takamatsu D, Wasserscheid J, Dewar K et al. Population structure and antimicrobial resistance profiles of Streptococcus suis serotype 2 sequence type 25 strains. PLoS One 2016; 11:e0150908 [View Article]
    [Google Scholar]
  63. Yongkiettrakul S, Wongsurawat T, Jenjaroenpun P, Acheampong DA, Srimanote P et al. Genome sequences of antibiotic-resistant Streptococcus suis strains isolated from human patients and diseased and asymptomatic pigs in Thailand. Infect Genet Evol 2021; 87:104674 [View Article] [PubMed]
    [Google Scholar]
  64. Holden MTG, Hauser H, Sanders M, Ngo TH, Cherevach I et al. Rapid evolution of virulence and drug resistance in the emerging zoonotic pathogen Streptococcus suis. PLoS One 2009; 4:e6072 [View Article] [PubMed]
    [Google Scholar]
  65. Shang Y, Li D, Hao W, Schwarz S, Shan X et al. A prophage and two ICESa2603-family integrative and conjugative elements (ICEs) carrying optrA in Streptococcus suis. J Antimicrob Chemother 2019; 74:2876–2879 [View Article] [PubMed]
    [Google Scholar]
  66. Du F, Lv X, Duan D, Wang L, Huang J. Characterization of a linezolid- and vancomycin-resistant Streptococcus suis isolate that harbors optrA and vanG operons. Front Microbiol 2019; 10:2026 [View Article]
    [Google Scholar]
  67. Khadthasrima N, Hannwong T, Thammawitjaya P, Pingsusean D, Akkanij B et al. Human Streptococcus suis Outbreak in Phayao Province, Thailand, 2007. OSIR 2008; 1:4–7
    [Google Scholar]
  68. Huber L, Hallenberg GS, Lunha K, Leangapichart T, Jiwakanon J et al. Geographic drivers of antimicrobial use and resistance in pigs in Khon Kaen Province, Thailand. Front Vet Sci 2021; 8:659051 [View Article] [PubMed]
    [Google Scholar]
  69. Coyne L, Arief R, Benigno C, Giang VN, Huong LQ et al. Characterizing antimicrobial use in the livestock sector in three South East Asian Countries (Indonesia, Thailand, and Vietnam). Antibiotics 2019; 8:33 [View Article]
    [Google Scholar]
  70. Huang J, Ma J, Shang K, Hu X, Liang Y et al. Evolution and diversity of the antimicrobial resistance associated mobilome in Streptococcus suis: a probable mobile genetic elements reservoir for other Streptococci. Front Cell Infect Microbiol 2016; 6:118 [View Article] [PubMed]
    [Google Scholar]
  71. Huang J, Chen L, Wu Z, Wang L. Retrospective analysis of genome sequences revealed the wide dissemination of optrA in Gram-positive bacteria. J Antimicrob Chemother 2017; 72:614–616 [View Article] [PubMed]
    [Google Scholar]
  72. He T, Shen Y, Schwarz S, Cai J, Lv Y et al. Genetic environment of the transferable oxazolidinone/phenicol resistance gene optrA in Enterococcus faecalis isolates of human and animal origin. J Antimicrob Chemother 2016; 71:1466–1473 [View Article] [PubMed]
    [Google Scholar]
  73. Wang Y, Lv Y, Cai J, Schwarz S, Cui L et al. A novel gene, optrA, that confers transferable resistance to oxazolidinones and phenicols and its presence in Enterococcus faecalis and Enterococcus faecium of human and animal origin. J Antimicrob Chemother 2015; 70:2182–2190 [View Article] [PubMed]
    [Google Scholar]
  74. Takeuchi D, Kerdsin A, Pienpringam A, Loetthong P, Samerchea S et al. Population-based study of Streptococcus suis infection in humans in Phayao Province in northern Thailand. PLoS One 2012; 7:e31265 [View Article] [PubMed]
    [Google Scholar]
  75. Kerdsin A, Segura M, Fittipaldi N, Gottschalk M. Sociocultural factors influencing human Streptococcus suis disease in Southeast Asia. Foods 2022; 11:1190 [View Article] [PubMed]
    [Google Scholar]
  76. Estrada AA, Gottschalk M, Rossow S, Rendahl A, Gebhart C et al. Serotype and genotype (Multilocus Sequence Type) of Streptococcus suis isolates from the United States serve as predictors of pathotype. J Clin Microbiol 2019; 57:e00377-19 [View Article] [PubMed]
    [Google Scholar]
/content/journal/mgen/10.1099/mgen.0.000952
Loading
/content/journal/mgen/10.1099/mgen.0.000952
Loading

Data & Media loading...

Supplements

Supplementary material 1

EXCEL

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error