- Volume 81, Issue 9, 2000
Volume 81, Issue 9, 2000
- Plant
-
-
-
Cytological and molecular evidence that the whitefly-transmitted Cucumber vein yellowing virus is a tentative member of the family Potyviridae
More LessCucumber vein yellowing virus (CVYV) is widespread in cucurbits in the Middle East. CVYV has filamentous particles and is transmitted by Bemisia tabaci by the semi-persistent mode. It has not yet been assigned to a specific genus or family. Ultramicroscopic observations revealed numerous cylindrical cytoplasmic inclusions in melon and cucumber cells infected by CVYV isolates from Israel and Jordan. Depending on the section orientation, the inclusions appeared as pinwheels or as bundles. In addition, a 1·9 kb DNA fragment was amplified by RT–PCR from CVYV-infected plant extracts using primers designed to detect all potyvirids. Sequence comparisons with the amplified fragment indicated that CVYV is more closely related to Sweet potato mild mottle virus than to any other virus in the family Potyviridae. These results suggest that CVYV can be considered as a tentative new member of the genus Ipomovirus, family Potyviridae.
-
-
-
-
Native electrophoresis and Western blot analysis (NEWeB): a method for characterization of different forms of potyvirus particles and similar nucleoprotein complexes in extracts of infected plant tissues
More LessA combination of native electrophoresis and immunodetection (Western blot) was used for the characterization of nucleoprotein particles of the potyvirus Plum pox virus (PPV). Virus particles were electrophoresed directly from plant extracts in agarose or mixed acrylamide–agarose gels under native conditions, blotted on nitrocellulose membranes, and characterized with the aid of a coat protein-specific antibody. Using this combined methodology, called NEWeB (native electrophoresis and Western blotting), we could show that a population of particles that differ in their electrophoretic mobility can be detected in extracts of Nicotiana benthamiana, that two different strains of PPV can be distinguished in double infections of the same plant and that virus particles from leaves contain detectable levels of helper component proteinase molecules. The potential of the NEWeB method for the study of structure and function of virus particles and similar nucleoprotein complexes in single and mixed infections is discussed.
-
-
-
Evidence that resistance in squash mosaic comovirus coat protein-transgenic plants is affected by plant developmental stage and enhanced by combination of transgenes from different lines
More LessThree transgenic lines of squash hemizygous for the coat protein genes of squash mosaic virus (SqMV) were shown previously to have resistant (SqMV-127), susceptible (SqMV-22) or recovery (SqMV-3) phenotypes. Post-transcriptional gene silencing (PTGS) was the underlying mechanism for resistance of SqMV-127. Here, experiments conducted to determine the mechanism of the recovery phenotype and whether enhanced resistance could be obtained by combining transgenes from susceptible and recovery plants are reported. Upper leaves of SqMV-3 plants were sampled for Northern analysis at 17, 31 and 45 days after germination (DAG) and a proportion of plants were inoculated with SqMV. SqMV-3 plants inoculated at a young stage (17 DAG) showed susceptible or recovery phenotypes. However, a number of plants inoculated at later developmental stages (31 or 45 DAG) were resistant to infection. Resistance of recovery plants was due to PTGS that was activated at a later developmental stage, independent of virus infection. Similar results were observed with plants grown under field conditions. To investigate the interactions of transgenes, progeny of crosses between SqMV-127, -3 and -22 were inoculated with SqMV. Progeny with the transgene of line 127 were resistant. However, a number of plants with transgenes from the recovery and susceptible lines or the self-pollinated recovery line were resistant even when inoculated at a young stage. Northern analysis suggested that resistance was due to PTGS. The results reveal that the timing of PTGS and consequent resistance of the transgenic plants were affected by their developmental stage and the interaction of transgene inserts.
-
-
-
The 3a cell-to-cell movement gene is dispensable for cell-to-cell transmission of brome mosaic virus RNA replicons in yeast but retained over 1045-fold amplification
More LessIn yeast expressing the RNA replication proteins encoded by brome mosaic virus (BMV), B3URA3, a BMV RNA3 derivative that harbours the 3a cell-to-cell movement protein gene and the yeast uracil biosynthesis gene URA3, was replicated and maintained in 85–95% of progeny at each cell division. Transmission of the B3URA3 RNA replicon from mother to daughter yeast did not require the 3a gene. Nevertheless, even after passaging for 165 cycles of RNA replication and yeast cell division, each of 40 independent Ura+ colonies tested retained B3URA3 RNAs whose electrophoretic mobilities and accumulation levels were indistinguishable from those of the original B3URA3. These and other results suggest that unselected genes in many positive-strand RNA virus replicons can be stably retained if the presence of the gene does not confer a selective disadvantage in RNA replication.
-
- Other Agents
-
-
-
Distribution of prion protein in the ileal Peyer’s patch of scrapie-free lambs and lambs naturally and experimentally exposed to the scrapie agent
A sensitive immunohistochemical procedure was used to investigate the presence of prion protein (PrP) in the ileal Peyer’s patch of PrP-genotyped lambs, including scrapie-free lambs and lambs naturally and experimentally exposed to the scrapie agent. The tyramide signal amplification system was used to enhance the sensitivity of conventional immunohistochemical procedures to show that PrP was widely distributed in the enteric nervous plexus supplying the gut wall. In scrapie-free lambs, PrP was also detected in scattered cells in the lamina propria and in the dome and interfollicular areas of the Peyer’s patch. In the follicles, staining for PrP was mainly confined to the capsule and cells associated with vascular structures in the light central zone. In lambs naturally exposed to the scrapie agent, staining was prominent in the dome and neck region of the follicles and was also found to be associated with the follicle-associated epithelium. Similar observations were made in lambs that had received a single oral dose of scrapie-infected brain material from sheep with a homologous and heterologous PrP genotype 1 and 5 weeks previously. These studies show that the ileal Peyer’s patch in young sheep may be an important site of uptake of the scrapie agent and that the biology of this major gut-associated lymphoid tissue may influence the susceptibility to oral infection in sheep. Furthermore, these studies suggest that homology or heterology between PrP genotypes or the presence of PrP genotypes seldom associated with disease does not impede uptake of PrP.
-
-
Volumes and issues
-
Volume 106 (2025)
-
Volume 105 (2024)
-
Volume 104 (2023)
-
Volume 103 (2022)
-
Volume 102 (2021)
-
Volume 101 (2020)
-
Volume 100 (2019)
-
Volume 99 (2018)
-
Volume 98 (2017)
-
Volume 97 (2016)
-
Volume 96 (2015)
-
Volume 95 (2014)
-
Volume 94 (2013)
-
Volume 93 (2012)
-
Volume 92 (2011)
-
Volume 91 (2010)
-
Volume 90 (2009)
-
Volume 89 (2008)
-
Volume 88 (2007)
-
Volume 87 (2006)
-
Volume 86 (2005)
-
Volume 85 (2004)
-
Volume 84 (2003)
-
Volume 83 (2002)
-
Volume 82 (2001)
-
Volume 81 (2000)
-
Volume 80 (1999)
-
Volume 79 (1998)
-
Volume 78 (1997)
-
Volume 77 (1996)
-
Volume 76 (1995)
-
Volume 75 (1994)
-
Volume 74 (1993)
-
Volume 73 (1992)
-
Volume 72 (1991)
-
Volume 71 (1990)
-
Volume 70 (1989)
-
Volume 69 (1988)
-
Volume 68 (1987)
-
Volume 67 (1986)
-
Volume 66 (1985)
-
Volume 65 (1984)
-
Volume 64 (1983)
-
Volume 63 (1982)
-
Volume 62 (1982)
-
Volume 61 (1982)
-
Volume 60 (1982)
-
Volume 59 (1982)
-
Volume 58 (1982)
-
Volume 57 (1981)
-
Volume 56 (1981)
-
Volume 55 (1981)
-
Volume 54 (1981)
-
Volume 53 (1981)
-
Volume 52 (1981)
-
Volume 51 (1980)
-
Volume 50 (1980)
-
Volume 49 (1980)
-
Volume 48 (1980)
-
Volume 47 (1980)
-
Volume 46 (1980)
-
Volume 45 (1979)
-
Volume 44 (1979)
-
Volume 43 (1979)
-
Volume 42 (1979)
-
Volume 41 (1978)
-
Volume 40 (1978)
-
Volume 39 (1978)
-
Volume 38 (1978)
-
Volume 37 (1977)
-
Volume 36 (1977)
-
Volume 35 (1977)
-
Volume 34 (1977)
-
Volume 33 (1976)
-
Volume 32 (1976)
-
Volume 31 (1976)
-
Volume 30 (1976)
-
Volume 29 (1975)
-
Volume 28 (1975)
-
Volume 27 (1975)
-
Volume 26 (1975)
-
Volume 25 (1974)
-
Volume 24 (1974)
-
Volume 23 (1974)
-
Volume 22 (1974)
-
Volume 21 (1973)
-
Volume 20 (1973)
-
Volume 19 (1973)
-
Volume 18 (1973)
-
Volume 17 (1972)
-
Volume 16 (1972)
-
Volume 15 (1972)
-
Volume 14 (1972)
-
Volume 13 (1971)
-
Volume 12 (1971)
-
Volume 11 (1971)
-
Volume 10 (1971)
-
Volume 9 (1970)
-
Volume 8 (1970)
-
Volume 7 (1970)
-
Volume 6 (1970)
-
Volume 5 (1969)
-
Volume 4 (1969)
-
Volume 3 (1968)
-
Volume 2 (1968)
-
Volume 1 (1967)