1887

Abstract

A Gram-negative, non-motile and rod-shaped strain, BIT-DXN8, was isolated from the gut of plastic-eating insect larvae . The taxonomic position of this new isolate was examined by using a polyphasic approach. A preliminary analysis based on the 16S rRNA gene sequence (1411 bp) indicated that the most similar strain to BIT-DXN8 was DSM 14964 (98.5%), followed by CIP 64.3 (98.2%) and S23 (98.2%). The results of phylogenetic analyses, based on the 16S rRNA gene, concatenated sequences of five housekeeping genes (, , , and ) and genome sequences, placed strain BIT-DXN8 in a separate lineage among the genus of the family . The average nucleotide identity and digital DNA–DNA hybridization values of the strain when compared to all other species within the genus were below 96 and 70 %, respectively. The physiological and biochemical tests confirm the affiliation of strain BIT-DXN8 to the present species within the genus , but with some specific phenotypic differences. Therefore, strain BIT-DXN8 is considered to represent a novel species, for which the name sp. nov. is proposed. The type strain is BIT-DXN8 (=CCTCC AB 2022117=KCTC 92696).

Funding
This study was supported by the:
  • Qinghai Provincial Key R&D and Transformation Plan Project (Award No. 2022-NK-115)
    • Principle Award Recipient: YuYang
  • the Young Elite Scientist Sponsorship Program of the China Association of Science and Technology (Award No. 2017QNRC001)
    • Principle Award Recipient: YuYang
  • National Natural Science Foundation of China (Award No. 31961133015 and No. 51603004)
    • Principle Award Recipient: YuYang
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006006
2023-08-23
2024-05-08
Loading full text...

Full text loading...

References

  1. Baumann P, Doudoroff M, Stanier RY. A study of the Moraxella group. II. Oxidative-negative species (genus Acinetobacter). J Bacteriol 1968; 95:1520–1541 [View Article] [PubMed]
    [Google Scholar]
  2. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article] [PubMed]
    [Google Scholar]
  3. Kim D, Baik KS, Kim MS, Park SC, Kim SS et al. Acinetobacter soli sp. nov., isolated from forest soil. J Microbiol 2008; 46:396–401 [View Article] [PubMed]
    [Google Scholar]
  4. Choi JY, Ko G, Jheong W, Huys G, Seifert H et al. Acinetobacter kookii sp. nov., isolated from soil. Int J Syst Evol Microbiol 2013; 63:4402–4406 [View Article] [PubMed]
    [Google Scholar]
  5. Krizova L, Maixnerova M, Sedo O, Nemec A. Acinetobacter albensis sp. nov., isolated from natural soil and water ecosystems. Int J Syst Evol Microbiol 2015; 65:3905–3912 [View Article]
    [Google Scholar]
  6. Krizova L, Maixnerova M, Sedo O, Nemec A. Acinetobacter bohemicus sp. nov. widespread in natural soil and water ecosystems in the Czech Republic. Syst Appl Microbiol 2014; 37:467–473 [View Article] [PubMed]
    [Google Scholar]
  7. Radolfova-Krizova L, Maixnerova M, Nemec A. Acinetobacter celticus sp. nov., a psychrotolerant species widespread in natural soil and water ecosystems. Int J Syst Evol Microbiol 2016; 66:5392–5398 [View Article] [PubMed]
    [Google Scholar]
  8. Radolfova-Krizova L, Maixnerova M, Nemec A. Acinetobacter pragensis sp. nov., found in soil and water ecosystems. Int J Syst Evol Microbiol 2016; 66:3897–3903 [View Article]
    [Google Scholar]
  9. Dahal RH, Chaudhary DK, Kim J. Acinetobacter halotolerans sp. nov., a novel halotolerant, alkalitolerant, and hydrocarbon degrading bacterium, isolated from soil. Arch Microbiol 2017; 199:701–710 [View Article] [PubMed]
    [Google Scholar]
  10. Hu Y, Feng Y, Zhang X, Zong Z. Acinetobacter defluvii sp. nov., recovered from hospital sewage. Int J Syst Evol Microbiol 2017; 67:1709–1713 [View Article] [PubMed]
    [Google Scholar]
  11. Qin J, Maixnerová M, Nemec M, Feng Y, Zhang X et al. Acinetobacter cumulans sp. nov., isolated from hospital sewage and capable of acquisition of multiple antibiotic resistance genes. Syst Appl Microbiol 2019; 42:319–325 [View Article] [PubMed]
    [Google Scholar]
  12. Qin J, Feng Y, X, Zong Z. Characterization of Acinetobacter chengduensis sp. nov., isolated from hospital sewage and capable of acquisition of carbapenem resistance genes. Syst Appl Microbiol 2020; 43:126092 [View Article] [PubMed]
    [Google Scholar]
  13. Nemec A, De Baere T, Tjernberg I, Vaneechoutte M, van der Reijden TJ et al. Acinetobacter ursingii sp. nov. and Acinetobacter schindleri sp. nov., isolated from human clinical specimens. Int J Syst Evol Microbiol 2001; 51:1891–1899 [View Article] [PubMed]
    [Google Scholar]
  14. Nemec A, Krizova L, Maixnerova M, Sedo O, Brisse S et al. Acinetobacter seifertii sp. nov., a member of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex isolated from human clinical specimens. Int J Syst Evol Microbiol 2015; 65:934–942 [View Article] [PubMed]
    [Google Scholar]
  15. Álvarez-Pérez S, Lievens B, Jacquemyn H, Herrera CM. Acinetobacter nectaris sp. nov. and Acinetobacter boissieri sp. nov., isolated from floral nectar of wild Mediterranean insect-pollinated plants. Int J Syst Evol Microbiol 2013; 63:1532–1539 [View Article] [PubMed]
    [Google Scholar]
  16. Yang Y, Wang J, Xia M. Biodegradation and mineralization of polystyrene by plastic-eating superworms Zophobas atratus. Sci Total Environ 2020; 708:135233 [View Article] [PubMed]
    [Google Scholar]
  17. Xia M, Hu L, Huo YX, Yang Y. Myroides albus sp. nov., isolated from the gut of plastic-eating larvae of the coleopteran insect Zophobas atratus. Int J Syst Evol Microbiol 2020; 70:5460–5466 [View Article] [PubMed]
    [Google Scholar]
  18. Xu Z, Xia M, Huo Y-X, Yang Y. Intestinirhabdus alba gen. nov., sp. nov., a novel genus of the family Enterobacteriaceae, isolated from the gut of plastic-eating larvae of the coleoptera insect Zophobas atratus. Int J Syst Evol Microbiol 2020; 70:4951–4959 [View Article]
    [Google Scholar]
  19. Yang J, Yang Y, Wu WM, Zhao J, Jiang L. Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. Environ Sci Technol 2014; 48:13776–13784 [View Article]
    [Google Scholar]
  20. Yang Y, Yang J, Wu WM, Zhao J, Song Y et al. Biodegradation and mineralization of polystyrene by plastic-eating mealworms: Part 2. role of gut microorganisms. Environ Sci Technol 2015; 49:12087–12093 [View Article] [PubMed]
    [Google Scholar]
  21. Yang Y, Yang J, Wu WM, Zhao J, Song Y et al. Biodegradation and mineralization of polystyrene by plastic-eating mealworms: Part 2. role of gut microorganisms. Environ Sci Technol 2015; 49:12087–12093 [View Article]
    [Google Scholar]
  22. Ru J, Huo Y, Yang Y. Microbial degradation and valorization of plastic wastes. Front Microbiol 2020; 11:442 [View Article] [PubMed]
    [Google Scholar]
  23. Cheng X, Xia M, Yang Y. Biodegradation of vulcanized rubber by a gut bacterium from plastic-eating mealworms. J Hazard Mater 2023; 448:130940 [View Article] [PubMed]
    [Google Scholar]
  24. Kurtzman CP, Fell JW, Boekhout T, Robert V. Methods for isolation, phenotypic characterization and maintenance of yeasts. In Kurtzman CP, Fell JW, Boekhout T. eds The Yeasts, A Taxonomic Study, 5th ed. Amsterdam: Elsevier; 2011 pp 87–110
    [Google Scholar]
  25. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [View Article] [PubMed]
    [Google Scholar]
  26. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  27. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23:2947–2948 [View Article] [PubMed]
    [Google Scholar]
  28. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  29. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  30. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  31. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  32. Luo R, Liu B, Xie Y, Li Z, Huang W et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 2012; 1:18 [View Article] [PubMed]
    [Google Scholar]
  33. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  34. Delcher AL, Bratke KA, Powers EC, Salzberg SL. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 2007; 23:673–679 [View Article] [PubMed]
    [Google Scholar]
  35. Besemer J, Borodovsky M. GeneMark: web software for gene finding in prokaryotes, eukaryotes and viruses. Nucleic Acids Res 2005; 33:W451–4 [View Article] [PubMed]
    [Google Scholar]
  36. Delétoile A, Decré D, Courant S, Passet V, Audo J et al. Phylogeny and identification of Pantoea species and typing of Pantoea agglomerans strains by multilocus gene sequencing. J Clin Microbiol 2009; 47:300–310 [View Article] [PubMed]
    [Google Scholar]
  37. Diancourt L, Passet V, Nemec A, Dijkshoorn L, Brisse S. The population structure of Acinetobacter baumannii: expanding multiresistant clones from an ancestral susceptible genetic pool. PLoS One 2010; 5:e10034 [View Article] [PubMed]
    [Google Scholar]
  38. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  39. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  40. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  41. Wolf S, Barth-Jakschic E, Birkle K, Bader B, Marschal M et al. Acinetobacter geminorum sp. nov., isolated from human throat swabs. Int J Syst Evol Microbiol 2021; 71:10 [View Article] [PubMed]
    [Google Scholar]
  42. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci 2009; 106:19126–19131 [View Article]
    [Google Scholar]
  43. Reddy CA, Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM et al. Methods for General and Molecular Bacteriology Washington, DC, USA: American Society for Microbiology; 2007
    [Google Scholar]
  44. Lefort V, Desper R, Gascuel O. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol 2015; 32:2798–2800 [View Article] [PubMed]
    [Google Scholar]
  45. Farris JS. Estimating phylogenetic trees from distance matrices. The American Naturalist 1972; 106:645–668 [View Article]
    [Google Scholar]
  46. Carr EL, Kämpfer P, Patel BKC, Gürtler V, Seviour RJ. Seven novel species of Acinetobacter isolated from activated sludge. Int J Syst Evol Microbiol 2003; 53:953–963 [View Article] [PubMed]
    [Google Scholar]
  47. Poppel MT, Skiebe E, Laue M, Bergmann H, Ebersberger I et al. Acinetobacter equi sp. nov., isolated from horse faeces. Int J Syst Evol Microbiol 2016; 66:881–888 [View Article] [PubMed]
    [Google Scholar]
  48. Nemec A, Krizova L, Maixnerova M, van der Reijden TJK, Deschaght P et al. Genotypic and phenotypic characterization of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex with the proposal of Acinetobacter pittii sp. nov. (formerly Acinetobacter genomic species 3) and Acinetobacter nosocomialis sp. nov. (formerly Acinetobacter genomic species 13TU). Res Microbiol 2011; 162:393–404 [View Article] [PubMed]
    [Google Scholar]
  49. Lee HJ, Lee SS. Acinetobacter kyonggiensis sp. nov., a β-glucosidase-producing bacterium, isolated from sewage treatment plant. J Microbiol 2010; 48:754–759 [View Article] [PubMed]
    [Google Scholar]
  50. Li Y, Chang J, Guo L, Wang H-M, Xie S et al. Description of Acinetobacter populi sp. nov. isolated from symptomatic bark of Populus × euramericana canker. Int J Syst Evol Microbiol 2015; 65:4461–4468 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006006
Loading
/content/journal/ijsem/10.1099/ijsem.0.006006
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error