1887

Abstract

Four Gram-stain-negative, oxidase-positive, non-motile, cocci-shaped bacteria strains (ZJ106, ZJ104, ZJ785 and ZJ930) were isolated from marmot respiratory tracts. Phylogenetic analyses based on 16S rRNA genes, 53 ribosomal protein sequences and 441 core genes supported that all four strains belonged to the genus with close relatives 10022 and ATCC 51483. Average nucleotide identity (ANI) and digital DNA–DNA hybridization (dDDH) values were below the species-level thresholds (95–96 % for ANI, and 70 % for dDDH). The major fatty acids of all four strains were C 7 /C 6, C and C 9. Major polar lipids were composed of diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol. MK-8 was the major menaquinone. Based on Virulence Factor Database analysis, the four strains were found to contain NspA and PorB H-factor binding proteins that promote evasion of host immunity. Strains ZJ106 and ZJ104 contained structures similar to the capsule synthesis manipulator of . Based on phenotypic and phylogenetic evidence, we propose that strains ZJ106 and ZJ785 represent two novel species of the genus , respectively, with the names sp. nov. and sp. nov. The type strains are ZJ106 (=GDMCC 1.3111=JCM 35323) and ZJ785 (=GDMCC 1.1998=KCTC 82336)

Funding
This study was supported by the:
  • Research Units of Discovery of Unknown Bacteria and Function (Award 2018RU010)
    • Principle Award Recipient: JianguoXu
  • National Key R&D Program of China (Award 2019TFC1200505)
    • Principle Award Recipient: LiyunLiu
  • National Key R&D Program of China (Award 2019TFC1200500)
    • Principle Award Recipient: JingYang
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006002
2023-08-23
2024-05-08
Loading full text...

Full text loading...

References

  1. Hollis DG, Wiggins GL, Weaver RE. Neisseria lactamicus sp. n., a lactose-fermenting species resembling Neisseria meningitidis. Appl Microbiol 1969; 17:71–77 [View Article] [PubMed]
    [Google Scholar]
  2. Vandamme P, Holmes B, Bercovier H, Coenye T. Classification of Centers for Disease Control Group Eugonic Fermenter (EF)-4a and EF-4b as Neisseria animaloris sp. nov. and Neisseria zoodegmatis sp. nov., respectively. Int J Syst Evol Microbiol 2006; 56:1801–1805 [View Article] [PubMed]
    [Google Scholar]
  3. Han XY, Hong T, Falsen E. Neisseria bacilliformis sp. nov. isolated from human infections. J Clin Microbiol 2006; 44:474–479 [View Article] [PubMed]
    [Google Scholar]
  4. Rouphael NG, Stephens DS. Neisseria meningitidis: biology, microbiology, and epidemiology. Methods Mol Biol 2012; 799:1–20 [View Article] [PubMed]
    [Google Scholar]
  5. Quillin SJ, Seifert HS. Neisseria gonorrhoeae host adaptation and pathogenesis. Nat Rev Microbiol 2018; 16:226–240 [View Article] [PubMed]
    [Google Scholar]
  6. Wroblewski D, Cole J, McGinnis J, Perez M, Wilson H et al. Neisseria dumasiana sp. nov. from human sputum and a dog’s mouth. Int J Syst Evol Microbiol 2017; 67:4304–4310 [View Article] [PubMed]
    [Google Scholar]
  7. Bennett JS, Jolley KA, Maiden MCJ. Genome sequence analyses show that Neisseria oralis is the same species as “Neisseria mucosa var. heidelbergensis.”. Int J Syst Evol Microbiol 2013; 63:3920–3926 [View Article] [PubMed]
    [Google Scholar]
  8. Zhang G, Yang J, Lai X-H, Jin D, Pu J et al. Neisseria weixii sp. nov., isolated from rectal contents of Tibetan Plateau pika (Ochotona curzoniae). Int J Syst Evol Microbiol 2019; 69:2305–2311 [View Article] [PubMed]
    [Google Scholar]
  9. Lu S, Jin D, Wu S, Yang J, Lan R et al. Insights into the evolution of pathogenicity of Escherichia coli from genomic analysis of intestinal E. coli of Marmota himalayana in Qinghai-Tibet plateau of China. Emerg Microbes Infect 2016; 5:e122 [View Article] [PubMed]
    [Google Scholar]
  10. Delgado S, Suárez A, Mayo B. Identification of dominant bacteria in feces and colonic mucosa from healthy Spanish adults by culturing and by 16S rDNA sequence analysis. Dig Dis Sci 2006; 51:744–751 [View Article] [PubMed]
    [Google Scholar]
  11. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  12. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23:2947–2948 [View Article] [PubMed]
    [Google Scholar]
  13. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  14. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  15. Kolaczkowski B, Thornton JW. Performance of maximum parsimony and likelihood phylogenetics when evolution is heterogeneous. Nature 2004; 431:980–984 [View Article] [PubMed]
    [Google Scholar]
  16. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  17. Berlin K, Koren S, Chin C-S, Drake JP, Landolin JM et al. Assembling large genomes with single-molecule sequencing and locality-sensitive hashing. Nat Biotechnol 2015; 33:623–630 [View Article] [PubMed]
    [Google Scholar]
  18. Jolley KA, Bliss CM, Bennett JS, Bratcher HB, Brehony C et al. Ribosomal multilocus sequence typing: universal characterization of bacteria from domain to strain. Microbiology 2012; 158:1005–1015 [View Article] [PubMed]
    [Google Scholar]
  19. Jolley KA, Bray JE, Maiden MCJ. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res 2018; 3:124 [View Article] [PubMed]
    [Google Scholar]
  20. Bennett JS, Jolley KA, Earle SG, Corton C, Bentley SD et al. A genomic approach to bacterial taxonomy: an examination and proposed reclassification of species within the genus Neisseria. Microbiology 2012; 158:1570–1580 [View Article] [PubMed]
    [Google Scholar]
  21. Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 2002; 30:3059–3066 [View Article] [PubMed]
    [Google Scholar]
  22. Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010; 59:307–321 [View Article] [PubMed]
    [Google Scholar]
  23. Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 2006; 22:1658–1659 [View Article] [PubMed]
    [Google Scholar]
  24. Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 2009; 26:1641–1650 [View Article] [PubMed]
    [Google Scholar]
  25. Huson DH, Scornavacca C. Dendroscope 3: an interactive tool for rooted phylogenetic trees and networks. Syst Biol 2012; 61:1061–1067 [View Article] [PubMed]
    [Google Scholar]
  26. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  27. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  28. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  29. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  30. Wayne LG. International Committee on Systematic Bacteriology: announcement of the report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Zentralbl Bakteriol Mikrobiol Hyg A 1988; 268:433–434 [View Article] [PubMed]
    [Google Scholar]
  31. Barbé G, Babolat M, Boeufgras JM, Monget D, Freney J. Evaluation of API NH, a new 2-hour system for identification of Neisseria and Haemophilus species and Moraxella catarrhalis in a routine clinical laboratory. J Clin Microbiol 1994; 32:187–189 [View Article] [PubMed]
    [Google Scholar]
  32. Xie CH, Yokota A. Phylogenetic analysis of Alysiella and related genera of Neisseriaceae: proposal of Alysiella crassa comb. nov., Conchiformibium steedae gen. nov., comb. nov., Conchiformibium kuhniae sp. nov. and Bergeriella denitrificans gen. nov., comb. nov. J Gen Appl Microbiol 2005; 51:1–10 [View Article] [PubMed]
    [Google Scholar]
  33. El Houmami N, Bakour S, Bzdrenga J, Rathored J, Seligmann H et al. Isolation and characterization of Kingella negevensis sp. nov., a novel Kingella species detected in a healthy paediatric population. Int J Syst Evol Microbiol 2017; 67:2370–2376 [View Article] [PubMed]
    [Google Scholar]
  34. Vela AI, Collins MD, Lawson PA, García N, Domínguez L et al. Uruburuella suis gen. nov., sp. nov., isolated from clinical specimens of pigs. Int J Syst Evol Microbiol 2005; 55:643–647 [View Article] [PubMed]
    [Google Scholar]
  35. Sud IJ, Feingold DS. Phospholipids and fatty acids of Neisseria gonorrhoeae. J Bacteriol 1975; 124:713–717 [View Article] [PubMed]
    [Google Scholar]
  36. Rahman MM, Kolli VSK, Kahler CM, Shih G, Stephens DS et al. The membrane phospholipids of Neisseria meningitidis and Neisseria gonorrhoeae as characterized by fast atom bombardment mass spectrometry. Microbiology 2000; 146 (Pt 8):1901–1911 [View Article] [PubMed]
    [Google Scholar]
  37. Harrison OB, Schoen C, Retchless AC, Wang X, Jolley KA et al. Neisseria genomics: current status and future perspectives. Pathog Dis 2017; 75:ftx060 [View Article] [PubMed]
    [Google Scholar]
  38. Wörmann ME, Horien CL, Johnson E, Liu G, Aho E et al. Neisseria cinerea isolates can adhere to human epithelial cells by type IV pilus-independent mechanisms. Microbiology 2016; 162:487–502 [View Article] [PubMed]
    [Google Scholar]
  39. Jamet A, Euphrasie D, Martin P, Nassif X. Identification of genes involved in Neisseria meningitidis colonization. Infect Immun 2013; 81:3375–3381 [View Article] [PubMed]
    [Google Scholar]
  40. Schneider MC, Prosser BE, Caesar JJE, Kugelberg E, Li S et al. Neisseria meningitidis recruits factor H using protein mimicry of host carbohydrates. Nature 2009; 458:890–893 [View Article] [PubMed]
    [Google Scholar]
  41. Rossi R, Konar M, Beernink PT. Meningococcal factor H binding protein vaccine antigens with increased thermal stability and decreased binding of human factor H. Infect Immun 2016; 84:1735–1742 [View Article] [PubMed]
    [Google Scholar]
  42. Lewis LA, Ngampasutadol J, Wallace R, Reid JEA, Vogel U et al. The meningococcal vaccine candidate neisserial surface protein A (NspA) binds to factor H and enhances meningococcal resistance to complement. PLoS Pathog 2010; 6:e1001027 [View Article] [PubMed]
    [Google Scholar]
  43. Rohde KH, Dyer DW. Mechanisms of iron acquisition by the human pathogens Neisseria meningitidis and Neisseria gonorrhoeae. Front Biosci 2003; 8:d1186–218 [View Article] [PubMed]
    [Google Scholar]
  44. Payne SM. Iron acquisition in microbial pathogenesis. Trends Microbiol 1993; 1:66–69 [View Article] [PubMed]
    [Google Scholar]
  45. Marri PR, Paniscus M, Weyand NJ, Rendón MA, Calton CM et al. Genome sequencing reveals widespread virulence gene exchange among human Neisseria species. PLoS One 2010; 5:e11835 [View Article] [PubMed]
    [Google Scholar]
  46. Harrison OB, Claus H, Jiang Y, Bennett JS, Bratcher HB et al. Description and nomenclature of Neisseria meningitidis capsule locus. Emerg Infect Dis 2013; 19:566–573 [View Article] [PubMed]
    [Google Scholar]
  47. Tzeng YL, Thomas J, Stephens DS. Regulation of capsule in Neisseria meningitidis. Crit Rev Microbiol 2016; 42:759–772 [View Article] [PubMed]
    [Google Scholar]
  48. Frosch M, Weisgerber C, Meyer TF. Molecular characterization and expression in Escherichia coli of the gene complex encoding the polysaccharide capsule of Neisseria meningitidis group B. Proc Natl Acad Sci 1989; 86:1669–1673 [View Article] [PubMed]
    [Google Scholar]
  49. Bonofiglio L, García E, Mollerach M. Biochemical characterization of the pneumococcal glucose 1-phosphate uridylyltransferase (GalU) essential for capsule biosynthesis. Curr Microbiol 2005; 51:217–221 [View Article] [PubMed]
    [Google Scholar]
  50. Wolfgang WJ, Passaretti TV, Jose R, Cole J, Coorevits A et al. Neisseria oralis sp. nov., isolated from healthy gingival plaque and clinical samples. Int J Syst Evol Microbiol 2013; 63:1323–1328 [View Article] [PubMed]
    [Google Scholar]
  51. Long PA, Sly LI, Pham AV, Davis GHG. Characterization of Morococcus cerebrosus gen. nov., sp. nov. and comparison with Neisseria mucosa. Int J Syst Bacteriol 1981; 31:294–301 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006002
Loading
/content/journal/ijsem/10.1099/ijsem.0.006002
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error