1887

Abstract

A Gram-negative, rod-shaped and aerobic bacterial strain B3.7, was isolated from the sediment of Zhairuo Island, Zhoushan city, Zhejiang Province, PR China. Maximum growth of strain B3.7 was observed at 30 °C when cultured in a medium containing 0.5 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences demonstrated that strain B3.7 belonged to the genus ; it showed the highest sequence similarity of 98.47 % to CCBAU 25048. The average nucleotide identity and digital DNA–DNA hybridization values between strain B3.7 and its reference strains were 82.9–84.2 % and 26.1–27.3 %, respectively. Chemotaxonomic analysis indicated that the sole respiratory quinone was Q-10 and the predominant cellular fatty acids were C cyclo 8, C, C 7 11-methyl and summed feature 8 (C 7 and/or C 6). The polar lipid profile was composed of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, three unidentified phospholipids and two unidentified aminolipids. Collectively, strain B3.7 can be considered to represent a novel species, for which the name sp. nov. is proposed. The type strain is B3.7 (=MCCC 1K07163=LMG 32559).

Funding
This study was supported by the:
  • the Science Foundation of Donghai Laboratory (Award DH-2022KF0204)
    • Principle Award Recipient: DaoqiongZheng
  • the National Natural Science Foundation of China Grants (Award 32170078)
    • Principle Award Recipient: DaoqiongZheng
  • the National Natural Science Foundation of China Grants (Award 32022004)
    • Principle Award Recipient: DaoqiongZheng
  • the National Natural Science Foundation of Zhejiang Province (Award DT23D060004)
    • Principle Award Recipient: DaoqiongZheng
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006000
2023-08-16
2024-05-08
Loading full text...

Full text loading...

References

  1. An D-S, Im W-T, Yang H-C, Lee S-T. Shinella granuli gen. nov., sp. nov., and proposal of the reclassification of Zoogloea ramigera ATCC 19623 as Shinella zoogloeoides sp. nov. Int J Syst Evol Microbiol 2006; 56:443–448 [View Article] [PubMed]
    [Google Scholar]
  2. Lindström K, Young JPW. International Committee on Systematics of Prokaryotes; subcommittee on the taxonomy of agrobacterium and rhizobium: minutes of the meetings, 31 August 2008, Gent, Belgium. Int J Syst Evol Microbiol 2009; 59:921–922 [View Article] [PubMed]
    [Google Scholar]
  3. Matsui T, Shinzato N, Tamaki H, Muramatsu M, Hanada S. Shinella yambaruensis sp. nov., a 3-methyl-sulfolane-assimilating bacterium isolated from soil. Int J Syst Evol Microbiol 2009; 59:536–539 [View Article] [PubMed]
    [Google Scholar]
  4. Mu Y, Jia W-B, Ke Z, Zhuang W, Wang H-M et al. Shinella pollutisoli sp. nov., isolated from tetrabromobisphenol A-contaminated soil. Int J Syst Evol Microbiol 2018; 68:2602–2606 [View Article] [PubMed]
    [Google Scholar]
  5. Subhash Y, Lee S-S. Shinella curvata sp. nov., isolated from hydrocarbon-contaminated desert sands. Int J Syst Evol Microbiol 2016; 66:3929–3934 [View Article] [PubMed]
    [Google Scholar]
  6. Lee M, Woo S-G, Ten LN. Shinella daejeonensis sp. nov., a nitrate-reducing bacterium isolated from sludge of a leachate treatment plant. Int J Syst Evol Microbiol 2011; 61:2123–2128 [View Article] [PubMed]
    [Google Scholar]
  7. Lin DX, Wang ET, Tang H, Han TX, He YR et al. Shinella kummerowiae sp. nov., a symbiotic bacterium isolated from root nodules of the herbal legume Kummerowia stipulacea. Int J Syst Evol Microbiol 2008; 58:1409–1413 [View Article] [PubMed]
    [Google Scholar]
  8. Vaz-Moreira I, Faria C, Lopes AR, Svensson LA, Moore ERB et al. Shinella fusca sp. nov., isolated from domestic waste compost. Int J Syst Evol Microbiol 2010; 60:144–148 [View Article] [PubMed]
    [Google Scholar]
  9. Arya AS, Hang MTH, Eiteman MA. Isolation and characterization of levoglucosan-metabolizing bacteria. Appl Environ Microbiol 2022; 88:e0186821 [View Article] [PubMed]
    [Google Scholar]
  10. Embley TM. The linear PCR reaction: a simple and robust method for sequencing amplified rRNA genes. Lett Appl Microbiol 1991; 13:171–174 [View Article] [PubMed]
    [Google Scholar]
  11. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [View Article] [PubMed]
    [Google Scholar]
  12. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  13. Janda JM, Abbott SL. 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. J Clin Microbiol 2007; 45:2761–2764 [View Article] [PubMed]
    [Google Scholar]
  14. Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article] [PubMed]
    [Google Scholar]
  15. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  16. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  17. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  18. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evol Int J Org Evol 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  19. Nei M, Kumar S. Molecular Evolution and Phylogenetics. Oxford University Press; 2000 https://book.douban.com/subject/4080754/ accessed 23 October 2022
  20. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  21. Sun C, Wang R-J, Su Y, Fu G-Y, Zhao Z et al. Hyphobacterium vulgare gen. nov., sp. nov., a novel alphaproteobacterium isolated from seawater. Int J Syst Evol Microbiol 2017; 67:1169–1176 [View Article] [PubMed]
    [Google Scholar]
  22. Chen C, Su Y, Tao T, Fu G, Zhang C et al. Maripseudobacter aurantiacus gen. nov., sp. nov., a novel member of the family Flavobacteriaceae isolated from a sedimentation basin. Int J Syst Evol Microbiol 2017; 67:778–783 [View Article] [PubMed]
    [Google Scholar]
  23. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 1990; 20:1–6
    [Google Scholar]
  24. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  25. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. . FEMS Microbiol Lett 1990; 66:199–202 [View Article]
    [Google Scholar]
  26. Nurk S, Bankevich A, Antipov D, Gurevich A, Korobeynikov A et al. Assembling genomes and mini-metagenomes from highly chimeric reads. In Deng M, Jiang R, Sun F, Zhang X. eds Research in Computational Molecular Biology Berlin, Heidelberg: Springer; 2013 pp 158–170
    [Google Scholar]
  27. Mikheenko A, Prjibelski A, Saveliev V, Antipov D, Gurevich A. Versatile genome assembly evaluation with QUAST-LG. Bioinformatics 2018; 34:i142–i150 [View Article] [PubMed]
    [Google Scholar]
  28. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  29. Krawczyk PS, Lipinski L, Dziembowski A. PlasFlow: predicting plasmid sequences in metagenomic data using genome signatures. Nucleic Acids Res 2018; 46:e35 [View Article] [PubMed]
    [Google Scholar]
  30. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article] [PubMed]
    [Google Scholar]
  31. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res 2014; 42:D206–D214 [View Article] [PubMed]
    [Google Scholar]
  32. Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S et al. RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 2015; 5:8365 [View Article] [PubMed]
    [Google Scholar]
  33. Chan PP, Lin BY, Mak AJ, Lowe TM. tRNAscan-SE 2.0: improved detection and functional classification of transfer RNA genes. Nucleic Acids Res 2021; 49:9077–9096 [View Article] [PubMed]
    [Google Scholar]
  34. Lagesen K, Hallin P, Rødland EA, Staerfeldt H-H, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007; 35:3100–3108 [View Article] [PubMed]
    [Google Scholar]
  35. Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 2000; 28:27–30 [View Article] [PubMed]
    [Google Scholar]
  36. Tatusov RL, Natale DA, Garkavtsev IV, Tatusova TA, Shankavaram UT et al. The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res 2001; 29:22–28 [View Article] [PubMed]
    [Google Scholar]
  37. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H et al. Gene Ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 2000; 25:25–29 [View Article]
    [Google Scholar]
  38. Gene Ontology Consortium The gene ontology resource: enriching a gold mine. Nucleic Acids Res 2021; 49:D325–D334 [View Article] [PubMed]
    [Google Scholar]
  39. Jones P, Binns D, Chang H-Y, Fraser M, Li W et al. InterProScan 5: genome-scale protein function classification. Bioinforma Oxf Engl 2014; 30:1236–1240 [View Article] [PubMed]
    [Google Scholar]
  40. Blum M, Chang H-Y, Chuguransky S, Grego T, Kandasaamy S et al. The InterPro protein families and domains database: 20 years on. Nucleic Acids Res 2021; 49:D344–D354 [View Article] [PubMed]
    [Google Scholar]
  41. Pritchard L, Glover RH, Humphris S, Elphinstone JG, Toth IK. Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens. Anal Methods 2016; 8:12–24 [View Article]
    [Google Scholar]
  42. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  43. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  44. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  45. Bertels F, Silander OK, Pachkov M, Rainey PB, van Nimwegen E. Automated reconstruction of whole-genome phylogenies from short-sequence reads. Mol Biol Evol 2014; 31:1077–1088 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006000
Loading
/content/journal/ijsem/10.1099/ijsem.0.006000
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error