1887

Abstract

A Gram-stain-negative, facultatively anaerobic, non-motile, rod-shaped bacterial strain, designated HL-MP18, was isolated from Arctic seawater after a prolonged incubation employing polypropylene as the sole carbon source. Phylogenetic analyses of the 16S rRNA gene sequence revealed that strain HL-MP18 was affiliated to the genus with close relatives LXJ103 (96.8 %) and KCTC 32327 (96.5 %). The complete genome sequence of strain HL-MP18 comprised a circular chromosome of 3.86 Mbp and two circular plasmids of 0.17 and 0.24 Mbp. Genomic comparisons based on average nucleotide identity and digital DNA–DNA hybridization showed that strain HL-MP18 was consistently discriminated from its closely related taxa in the genus . Strain HL-MP18 showed optimal growth at 25 °C, pH 7.0 and 2.5 % (w/v) sea salts. The major cellular fatty acids were C 6 and/or C 7 (49.6 %), C cyclo 8 (13.5 %), and C (12.8 %). The major respiratory quinone was ubiquinone-10. The polar lipids consisted of phosphatidylcholine, phosphatidylglycerol, an unidentified aminolipid and three unidentified lipids. The genomic DNA G+C content of the strain was 59.2 mol%. The phylogenetic, genomic, phenotypic and chemotaxonomic results indicate that strain HL-MP18 is distinguishable from the recognized species of the genus . Therefore, we propose that strain HL-MP18 represents a novel species belonging to the genus , for which the name sp. nov. is proposed. The type strain is HL-MP18 (=KCCM 90405=JCM 35639).

Funding
This study was supported by the:
  • Korea Institute of Marine Science and Technology promotion (Award KIMST-20210427)
    • Principle Award Recipient: ChungYeon Hwang
  • Seoul National University (Award the New Faculty Startup Fund)
    • Principle Award Recipient: ChungYeon Hwang
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005999
2023-08-10
2024-05-09
Loading full text...

Full text loading...

References

  1. Labrenz M, Collins MD, Lawson PA, Tindall BJ, Schumann P et al. Roseovarius tolerans gen. nov., sp. nov., a budding bacterium with variable bacteriochlorophyll a production from hypersaline Ekho Lake. Int J Syst Bacteriol 1999; 49 Pt 1:137–147 [View Article] [PubMed]
    [Google Scholar]
  2. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article] [PubMed]
    [Google Scholar]
  3. Liang KYH, Orata FD, Boucher YF, Case RJ. Roseobacters in a sea of poly- and paraphyly: whole genome-based taxonomy of the family Rhodobacteraceae and the proposal for the split of the “Roseobacter clade” into a novel family, Roseobacteraceae fam. nov. Front Microbiol 2021; 12:683109 [View Article] [PubMed]
    [Google Scholar]
  4. González JM, Covert JS, Whitman WB, Henriksen JR, Mayer F et al. Silicibacter pomeroyi sp. nov. and Roseovarius nubinhibens sp. nov., dimethylsulfoniopropionate-demethylating bacteria from marine environments. Int J Syst Evol Microbiol 2003; 53:1261–1269 [View Article] [PubMed]
    [Google Scholar]
  5. Zhang Y-H, Dong J-D, Wang Y-S, Gu J-D, Yin J-P et al. Comparative genomics reveals the evidence of aromatic hydrocarbons degradation potential in genus Roseovarius in marine environment. Int Biodeterior Biodegrad 2022; 171:105408 [View Article]
    [Google Scholar]
  6. Sooriyakumar P, Bolan N, Kumar M, Singh L, Yu Y et al. Biofilm formation and its implications on the properties and fate of microplastics in aquatic environments: a review. J Hazard Mater Adv 2022; 6:100077 [View Article]
    [Google Scholar]
  7. Lucena T, Ruvira MA, Macián MC, Pujalte MJ, Arahal DR. Roseovarius albus sp. nov., a new Alphaproteobacterium isolated from the Mediterranean sea. Antonie van Leeuwenhoek 2014; 105:671–678 [View Article] [PubMed]
    [Google Scholar]
  8. Kang H, Kim J-H, Jeon CO, Yoon J-H, Kim W. Roseovarius aquimarinus sp. nov., a slightly halophilic bacterium isolated from seawater. Int J Syst Evol Microbiol 2015; 65:4514–4520 [View Article] [PubMed]
    [Google Scholar]
  9. Li G, Lai Q, Dong C, Ma R, Du Y et al. Roseovarius atlanticus sp. nov., isolated from surface seawater. Int J Syst Evol Microbiol 2016; 66:639–644 [View Article] [PubMed]
    [Google Scholar]
  10. Rajasabapathy R, Mohandass C, Dastager SG, Liu Q, Khieu TN et al. Roseovarius azorensis sp. nov., isolated from seawater at Espalamaca, Azores. Antonie van Leeuwenhoek 2014; 105:571–578 [View Article] [PubMed]
    [Google Scholar]
  11. Oh Y-S, Lim H-J, Cha I-T, Im W-T, Yoo J-S et al. Roseovarius halotolerans sp. nov., isolated from deep seawater. Int J Syst Evol Microbiol 2009; 59:2718–2723 [View Article] [PubMed]
    [Google Scholar]
  12. Lai Q, Zhong H, Wang J, Yuan J, Sun F et al. Roseovarius indicus sp. nov., isolated from deep-sea water of the Indian Ocean. Int J Syst Evol Microbiol 2011; 61:2040–2044 [View Article] [PubMed]
    [Google Scholar]
  13. Jung Y-T, Park S, Yoon J-H. Roseovarius litoreus sp. nov., isolated from seawater of southern coast of Korean peninsula. Antonie van Leeuwenhoek 2012; 102:141–148 [View Article] [PubMed]
    [Google Scholar]
  14. Li Z, Zhao R, Ji S, Shi X, Zhang X-H. Roseovarius marisflavi sp. nov., isolated from an amphioxus breeding zone in the coastal region of the Yellow Sea, China. Antonie van Leeuwenhoek 2013; 104:413–421 [View Article] [PubMed]
    [Google Scholar]
  15. Park S, Jung Y-T, Yoon J-H. Pelagicola litorisediminis sp. nov., a novel alphaproteobacterium isolated from tidal flat sediment. Antonie van Leeuwenhoek 2013; 104:103–110 [View Article] [PubMed]
    [Google Scholar]
  16. Yoon JH, Kang SJ, Oh TK. Roseovarius aestuarii sp. nov., isolated from a tidal flat of the Yellow Sea in Korea. Int J Syst Evol Microbiol 2008; 58:1198–1202 [View Article] [PubMed]
    [Google Scholar]
  17. Park S, Ha MJ, Yoon SY, Jung YT, Yoon JH. Roseovarius aestuariivivens sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2017; 67:25–30 [View Article] [PubMed]
    [Google Scholar]
  18. Lu L, Zhang Y, Peng X, Liu J, Qin K et al. Roseovarius arcticus sp. nov., a bacterium isolated from Arctic marine sediment. Int J Syst Evol Microbiol 2020; 70:2072–2078 [View Article] [PubMed]
    [Google Scholar]
  19. Jia X, Kim HR, Jia B, Jeon HH, Baek K et al. Roseovarius confluentis sp. nov., isolated from estuary sediment. Int J Syst Evol Microbiol 2017; 67:346–351 [View Article] [PubMed]
    [Google Scholar]
  20. Park S, Park JM, Kang CH, Yoon JH. Roseovarius gaetbuli sp. nov., a novel alphaproteobacterium isolated from a tidal flat sediment. Antonie van Leeuwenhoek 2014; 105:723–730 [View Article] [PubMed]
    [Google Scholar]
  21. Choi EJ, Lee HJ, Kim JM, Jeon CO. Roseovarius lutimaris sp. nov., isolated from a marine tidal flat. Int J Syst Evol Microbiol 2013; 63:3835–3840 [View Article] [PubMed]
    [Google Scholar]
  22. Wang B, Sun F, Lai Q, Du Y, Liu X et al. Roseovarius nanhaiticus sp. nov., a member of the Roseobacter clade isolated from marine sediment. Int J Syst Evol Microbiol 2010; 60:1289–1295 [View Article] [PubMed]
    [Google Scholar]
  23. Wang B, Tan T, Shao Z. Roseovarius pacificus sp. nov., isolated from deep-sea sediment. Int J Syst Evol Microbiol 2009; 59:1116–1121 [View Article] [PubMed]
    [Google Scholar]
  24. Wang N-N, Liu Z-Y, Jiang L-X, Li Y-X, Du Z-J. Roseovarius salinarum sp. nov., isolated from a marine solar saltern. Int J Syst Evol Microbiol 2018; 68:1986–1991 [View Article] [PubMed]
    [Google Scholar]
  25. Cha IT, Cho ES, Choi HJ, Roh SW, Seo MJ. Roseovarius faecimaris sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2019; 69:1465–1471 [View Article] [PubMed]
    [Google Scholar]
  26. Castro DJ, Cerezo I, Sampedro I, Martínez-Checa F. Roseovarius ramblicola sp. nov., a moderately halophilic bacterium isolated from saline soil in Spain. Int J Syst Evol Microbiol 2018; 68:1851–1856 [View Article] [PubMed]
    [Google Scholar]
  27. Deng S, Jiang F, Chang X, Qu Z, Ren L et al. Roseovarius antarcticus sp. nov., isolated from a decayed whale bone. Int J Syst Evol Microbiol 2015; 65:2326–2333 [View Article] [PubMed]
    [Google Scholar]
  28. Zhuang L, Luo L. Roseovarius spongiae sp. nov., a bacterium isolated from marine sponge. Int J Syst Evol Microbiol 2020; 70:274–281 [View Article] [PubMed]
    [Google Scholar]
  29. Kim Y-O, Park S, Nam B-H, Park J-M, Kim D-G et al. Roseovarius scapharcae sp. nov., isolated from ark shell Scapharca broughtonii. Int J Syst Evol Microbiol 2015; 65:4695–4700 [View Article] [PubMed]
    [Google Scholar]
  30. Sun X, Lin D, Han Y, Sun J, Ye J et al. Roseovarius carneus sp. nov., a novel bacterium isolated from a coastal phytoplankton bloom in Xiamen. Int J Syst Evol Microbiol 2022; 72:005577 [View Article] [PubMed]
    [Google Scholar]
  31. Biebl H, Allgaier M, Lünsdorf H, Pukall R, Tindall BJ et al. Roseovarius mucosus sp. nov., a member of the Roseobacter clade with trace amounts of bacteriochlorophyll a. Int J Syst Evol Microbiol 2005; 55:2377–2383 [View Article] [PubMed]
    [Google Scholar]
  32. Lane D. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. eds Nucleic Acid Techniques in Bacterial Systematics Chichester: Wiley;1991;
    [Google Scholar]
  33. Englen MD, Kelley LC. A rapid DNA isolation procedure for the identification of Campylobacter jejuni by the polymerase chain reaction. Lett Appl Microbiol 2000; 31:421–426 [View Article] [PubMed]
    [Google Scholar]
  34. Charoenyingcharoen P, Kim J-S, Theeragool G, Lee K-C, Yukphan P et al. Donghicola mangrovi sp. nov., a member of the family Rhodobacteraceae isolated from mangrove forest in Thailand. Int J Syst Evol Microbiol 2021; 71:004570 [View Article] [PubMed]
    [Google Scholar]
  35. Jeon Y-S, Lee K, Park S-C, Kim B-S, Cho Y-J et al. EzEditor: a versatile sequence alignment editor for both rRNA- and protein-coding genes. Int J Syst Evol Microbiol 2014; 64:689–691 [View Article] [PubMed]
    [Google Scholar]
  36. Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol Biol Evol 2021; 38:3022–3027 [View Article]
    [Google Scholar]
  37. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  38. Jukes TH, Cantor CR. Evolution of protein molecules. In Munro HN. eds Mammalian Protein Metabolism New York: Academic Press; 1969
    [Google Scholar]
  39. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  40. Tamura K. Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+C-content biases. Mol Biol Evol 1992; 9:678–687 [View Article] [PubMed]
    [Google Scholar]
  41. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Systematic Biology 1971; 20:406–416 [View Article]
    [Google Scholar]
  42. Nei M, Kumar S. Molecular Evolution and Phylogenetics Oxford University Press; 2000
    [Google Scholar]
  43. Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol 2019; 37:540–546 [View Article] [PubMed]
    [Google Scholar]
  44. Mikheenko A, Prjibelski A, Saveliev V, Antipov D, Gurevich A. Versatile genome assembly evaluation with QUAST-LG. Bioinformatics 2018; 34:i142–i150 [View Article] [PubMed]
    [Google Scholar]
  45. Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V et al. Twelve years of SAMtools and BCFtools. Gigascience 2021; 10:giab008 [View Article] [PubMed]
    [Google Scholar]
  46. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article] [PubMed]
    [Google Scholar]
  47. Karp PD, Billington R, Caspi R, Fulcher CA, Latendresse M et al. The BioCyc collection of microbial genomes and metabolic pathways. Brief Bioinform 2019; 20:1085–1093 [View Article] [PubMed]
    [Google Scholar]
  48. Caspi R, Billington R, Keseler IM, Kothari A, Krummenacker M et al. The MetaCyc database of metabolic pathways and enzymes - a 2019 update. Nucleic Acids Res 2020; 48:D445–D453 [View Article] [PubMed]
    [Google Scholar]
  49. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  50. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2021; 50:D801–D807 [View Article] [PubMed]
    [Google Scholar]
  51. Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 2019; 36:1925–1927 [View Article] [PubMed]
    [Google Scholar]
  52. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  53. Hördt A, López MG, Meier-Kolthoff JP, Schleuning M, Weinhold L-M et al. Analysis of 1,000+ type-strain genomes substantially improves taxonomic classification of Alphaproteobacteria. Front Microbiol 2020; 11:468 [View Article] [PubMed]
    [Google Scholar]
  54. Ru J, Huo Y, Yang Y. Microbial degradation and valorization of plastic wastes. Front Microbiol 2020; 11:442 [View Article] [PubMed]
    [Google Scholar]
  55. Santo M, Weitsman R, Sivan A. The role of the copper-binding enzyme – laccase – in the biodegradation of polyethylene by the actinomycete Rhodococcus ruber. Int Biodeterior Biodegrad 2013; 84:204–210 [View Article]
    [Google Scholar]
  56. Jeon J-M, Park S-J, Choi T-R, Park J-H, Yang Y-H et al. Biodegradation of polyethylene and polypropylene by Lysinibacillus species JJY0216 isolated from soil grove. Polym Degrad Stab 2021; 191:109662 [View Article]
    [Google Scholar]
  57. Bernardet J-F, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070 [View Article] [PubMed]
    [Google Scholar]
  58. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, JA B, Marzluf G. eds Methods for General and Molecular Microbiology American Society of Microbiology; 2007 pp 330–393 [View Article]
    [Google Scholar]
  59. Lányi B. Classical and rapid identification methods for medically important bacteria. Method Microbiol 1987; 19:1–67
    [Google Scholar]
  60. Smibert R, Krieg N, Gerhardt P, Murray R, Wood W. Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp 607–654
    [Google Scholar]
  61. Cowan S, Steel KJ. Manual for the Identification of Medical Bacteria Cambridge University Press; 1965
    [Google Scholar]
  62. Jang GI, Lee I, Ha TT, Yoon SJ, Hwang YJ et al. Pseudomonas neustonica sp. nov., isolated from the sea surface microlayer of the Ross Sea (Antarctica). Int J Syst Evol Microbiol 2020; 70:3832–3838 [View Article] [PubMed]
    [Google Scholar]
  63. Li G, Lai Q, Yan P, Shao Z. Roseovarius amoyensis sp. nov. and Muricauda amoyensis sp. nov., isolated from the Xiamen coast. Int J Syst Evol Microbiol 2019; 69:3100–3108 [View Article]
    [Google Scholar]
  64. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Meth 1984; 2:233–241 [View Article]
    [Google Scholar]
  65. Komagata K, Suzuki K. Lipid and cell-wall analysis in bacterial systematics. Method Microbiol 1987; 19:161–207
    [Google Scholar]
  66. Collins MD. Analysis of isoprenoid quinones. In Methods in Microbiology Elsevier; 1985 pp 329–366
    [Google Scholar]
  67. Pujalte MJ, Lucena T, Ruvira MA, Arahal DR, Macián MC. The family Rhodobacteraceae. In Rosenberg E, DeLong E, Lory S, Stackebrandt E, Thompson F. eds The Prokaryotes Springer; 2014 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005999
Loading
/content/journal/ijsem/10.1099/ijsem.0.005999
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error