1887

Abstract

Strain designated TK19116 was isolated from the shallow-sea hydrothermal systems off Kueishantao Island in Taiwan, China. The bacterium was Gram-stain-negative, aerobic, oxidase-positive and catalase-positive. Cells of the strain TK19116 were short-rod-shaped and non-motile. The results of phylogenetic analysis of 16S rRNA gene sequences indicated that strain TK19116 belonged to the genus , with the highest sequence similarity to 4-2 (97.1 %). The average nucleotide identity values between the strain TK19116 with 4-2, J6, M26 and BM15 were 75.3, 76.7, 76.7 and 75.8%, respectively. The digital DNA–DNA hybridization value between the strain TK19116 with 4-2, J6, M26 and BM15 were 19.7, 20.3, 20.5 and 20.0%, respectively. The main respiratory quinone of strain TK19116 was ubiquinone 10. The polar lipids include aminolipid, phosphatidylcholine, diphosphatidylglycerol, glycolipid, phosphatidylglycerol and phospholipid. The principal fatty acid of strain TK19116 was summed feature 8 (C 6 and/or C 7). The G+C content of the chromosomal DNA was 64.2 %. The combination of the results of the phylogenetic, phenotypic and chemotaxonomic analysis, strain TK19116 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is TK19116 (= MCCC 1K08025=JCM 35527).

Funding
This study was supported by the:
  • International Science Partnership Program of the Chinese Academy of Sciences (Award 121311KYSB20190029)
    • Principle Award Recipient: KaiTang
  • National Natural Science Foundation of China (Award 42276120)
    • Principle Award Recipient: KaiTang
  • National Natural Science Foundation of China (Award 42188102)
    • Principle Award Recipient: KaiTang
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005998
2023-08-03
2024-05-08
Loading full text...

Full text loading...

References

  1. Davis DH, Doudoroff M, Stanier RY, Mandel M. Proposal to reject the genus Hydrogenomonas: taxonomic implications. Int J Syst Bacteriol 1969; 19:375–390 [View Article]
    [Google Scholar]
  2. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article] [PubMed]
    [Google Scholar]
  3. Sheu S-Y, Hsieh T-Y, Young C-C, Chen W-M. Paracoccus fontiphilus sp. nov., isolated from a freshwater spring. Int J Syst Evol Microbiol 2018; 68:2054–2060 [View Article] [PubMed]
    [Google Scholar]
  4. Lyu L, Zhi B, Lai Q, Shao Z, Yu Z. Paracoccus xiamenensis sp. nov., isolated from seawater on the Xiamen. Int J Syst Evol Microbiol 2020; 70:4285–4290 [View Article] [PubMed]
    [Google Scholar]
  5. Xue H, Piao C, Guo M, Wang L, Li Y. Paracoccus aerius sp. nov., isolated from air. Int J Syst Evol Microbiol 2017; 67:2586–2591 [View Article] [PubMed]
    [Google Scholar]
  6. Dong X, Zhang G, Xiong Q, Liu D, Wang D et al. Paracoccus salipaludis sp. nov., isolated from saline-alkaline soil. Int J Syst Evol Microbiol 2018; 68:3812–3817 [View Article] [PubMed]
    [Google Scholar]
  7. Jung Y-T, Park S, Lee J-S, Yoon J-H. Paracoccus lutimaris sp. nov., isolated from a tidal flat sediment. Int J Syst Evol Microbiol 2014; 64:2763–2769 [View Article] [PubMed]
    [Google Scholar]
  8. Liu X-Y, Wang B-J, Jiang C-Y, Liu S-J. Paracoccus sulfuroxidans sp. nov., a sulfur oxidizer from activated sludge. Int J Syst Evol Microbiol 2006; 56:2693–2695 [View Article] [PubMed]
    [Google Scholar]
  9. Pan J, Sun C, Zhang X-Q, Huo Y-Y, Zhu X-F et al. Paracoccus sediminis sp. nov., isolated from Pacific Ocean marine sediment. Int J Syst Evol Microbiol 2014; 64:2512–2516 [View Article] [PubMed]
    [Google Scholar]
  10. Zhang H, Li Y-Q, Xiao M, Fang B-Z, Alkhalifah DHM et al. Description of Paracoccus endophyticus sp. nov., isolated from Gastrodia elata Blume. Int J Syst Evol Microbiol 2019; 69:261–265 [View Article]
    [Google Scholar]
  11. Li J, Lu S, Jin D, Yang J, Lai X-H et al. Paracoccus liaowanqingii sp. nov., isolated from Tibetan antelope (Pantholops hodgsonii). Int J Syst Evol Microbiol 2020; 70:744–750 [View Article] [PubMed]
    [Google Scholar]
  12. Sheu S-Y, Hsieh T-Y, Young C-C, Chen W-M. Paracoccus fontiphilus sp. nov., isolated from a freshwater spring. Int J Syst Evol Microbiol 2018; 68:2054–2060 [View Article] [PubMed]
    [Google Scholar]
  13. Chen W-M, Li Y-S, Young C-C, Sheu S-Y. Paracoccus mangrovi sp. nov., isolated from a mangrove. Int J Syst Evol Microbiol 2017; 67:2689–2695 [View Article] [PubMed]
    [Google Scholar]
  14. Pan D, Huang Q, Chen W. Screening and identification of two heterotrophic nitrifying bacteria and characterization of their capacity for nitrogen removal. Wei Sheng Wu Xue Bao 2011; 51:1382–1389 [PubMed]
    [Google Scholar]
  15. Wang W, Cai Z, Zhong W, Wang G. Research advances in aerobic denitrifiers. Ying Yong Sheng Tai Xue Bao 2007; 18:2618–2625 [PubMed]
    [Google Scholar]
  16. Lane 16S/23S rRNA sequencing; 1991
  17. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  18. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  19. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  20. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  21. Zhang Y-X, Li X, Li F-L, Ma S-C, Zheng G-D et al. Paracoccus alkanivorans sp. nov., isolated from a deep well with oil reservoir water. Int J Syst Evol Microbiol 2020; 70:2312–2317 [View Article] [PubMed]
    [Google Scholar]
  22. Liu Y, Xie Q, Hong K, Li L, Zhao Y et al. Paracoccus siganidrum sp. nov., isolated from fish gastrointestinal tract. Antonie van Leeuwenhoek 2013; 103:1133–1139 [View Article]
    [Google Scholar]
  23. Sheu S-Y, Jiang S-R, Chen CA, Wang J-T, Chen W-M. Paracoccus stylophorae sp. nov., isolated from the reef-building coral Stylophora pistillata. Int J Syst Evol Microbiol 2011; 61:2221–2226 [View Article]
    [Google Scholar]
  24. Hunt M, Newbold C, Berriman M, Otto TD. A comprehensive evaluation of assembly scaffolding tools. Genome Biol 2014; 15:R42 [View Article] [PubMed]
    [Google Scholar]
  25. Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics 2011; 27:578–579 [View Article] [PubMed]
    [Google Scholar]
  26. Boetzer M, Pirovano W. Toward almost closed genomes with GapFiller. Genome Biol 2012; 13:R56 [View Article] [PubMed]
    [Google Scholar]
  27. Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 2008; 18:821–829 [View Article] [PubMed]
    [Google Scholar]
  28. Zerbino DR, McEwen GK, Margulies EH, Birney E. Pebble and rock band: heuristic resolution of repeats and scaffolding in the velvet short-read de novo assembler. PLoS One 2009; 4:e8407 [View Article] [PubMed]
    [Google Scholar]
  29. Na S-I, Kim YO, Yoon S-H, Ha S-M, Baek I et al. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article] [PubMed]
    [Google Scholar]
  30. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article] [PubMed]
    [Google Scholar]
  31. Price MN, Dehal PS, Arkin AP. FastTree 2--approximately maximum-likelihood trees for large alignments. PLoS One 2010; 5:e9490 [View Article] [PubMed]
    [Google Scholar]
  32. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  33. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2022; 50:D801–D807 [View Article] [PubMed]
    [Google Scholar]
  34. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article] [PubMed]
    [Google Scholar]
  35. Moore WEC, Stackebrandt E, Kandler O, Colwell RR, Krichevsky MI et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37:463–464 [View Article]
    [Google Scholar]
  36. Yurkov VV, Krieger S, Stackebrandt E, Beatty JT. Citromicrobium bathyomarinum, a novel aerobic bacterium isolated from deep-sea hydrothermal vent plume waters that contains photosynthetic pigment-protein complexes. J Bacteriol 1999; 181:4517–4525 [View Article] [PubMed]
    [Google Scholar]
  37. Gerhardt P. Methods for general and molecular Bacteriology; 1994
  38. Komagata K. [Methods in Microbiology] Current Methods for Classification and Identification of Microorganisms Volume 19 || 4 Lipid and Cell-Wall Analysis in Bacterial Systematics 1988 pp 161–207
    [Google Scholar]
  39. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990; 13:128–130 [View Article]
    [Google Scholar]
  40. Tindall B. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990; 66:199–202 [View Article]
    [Google Scholar]
  41. Henry H H, Jennifer L W. Lipid extraction procedures. Methods Mol Biol 1986; 2468: [View Article]
    [Google Scholar]
  42. Costa MSD. The Identification of Polar Lipids in Prokaryotes - Science Direct 2011 pp 165–181
    [Google Scholar]
  43. Lee J-Y, Hyun D-W, Yun J-H, Jung M-J, Shin N-R et al. Paracoccus tegillarcae sp. nov., isolated from the gastrointestinal tract of a blood cockle (Tegillarca granosa). Int J Syst Evol Microbiol 2019; 69:2815–2822 [View Article] [PubMed]
    [Google Scholar]
  44. Wu Z-G, Zhang D-F, Liu Y-L, Wang F, Jiang X et al. Paracoccus zhejiangensis sp. nov., isolated from activated sludge in wastewater-treatment system. Antonie van Leeuwenhoek 2013; 104:123–128 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005998
Loading
/content/journal/ijsem/10.1099/ijsem.0.005998
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error