1887

Abstract

Two Gram-stain-negative, motile with single polar flagellum, rod-shaped bacterial strains, named SJ-9 and SJ-92, were isolated from saline soils from Inner Mongolia, PR China. SJ-9 and SJ-92 grew at pH 6.5–10.0 and 7.0–11.0, 10–35 °C, and in the presence of 0–5 % and 0–8 % NaCl, respectively. Both strains were positive for oxidase, and negative for catalase. The results of phylogenetic analysis based on 16S rRNA gene sequences indicated that SJ-9 clustered with FR1330 (sharing 97.9 % 16S rRNA gene similarity), HB2 (96.5 %), ‘’ YD-1 (96.6 %), and CC-YY255 (95.1 %), and shared low 16S rRNA gene similarities (<97.0 %) with all the other type strains; while SJ-92 clustered with B9 (98.2 %), and shared low 16S rRNA gene similarities (<98.0 %) with all the other type strains. The two strains shared 97.4 % 16S rRNA gene similarity with each other. The major cellular fatty acids of both strains are iso-C and summed feature 9 (C 10-methyl and/or iso-Cω9). The major polar lipids of both strains are diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The only respiratory quinone for both strains is ubiquinone-8 (Q-8). The genomic DNA G+C contents are 69.3 and 70.4 mol%, respectively. The digital DNA–DNA hybridization (dDDH) and average nucleotide identity by (ANIb) values between the two strains were 22.6 and 77.5 %, while the values between SJ-9 and ‘’ YD-1, FR1330, and HB2 were 38.1, 39.2, and 21.9 %, and 82.5, 84.4, and 78.5 %, while those between SJ-92 and B9 were 21.3 and 76.7 %. On the basis of the phenotypic, physiological and phylogenetic results, SJ-9 and SJ-92 represent two novel species of the genus , for which the names [type stain SJ-9 (=CGMCC 1.17377=KCTC 82248)] and [type strain SJ-92 (=CGMCC 1.17695=KCTC 82208)] are proposed.

Funding
This study was supported by the:
  • Natural Science Foundation of Inner Mongolia (Award 2021MS03031)
    • Principle Award Recipient: Ji-QuanSun
  • Inner Mongolia Science & Technology Plan (Award 2020GG0034)
    • Principle Award Recipient: Ji-QuanSun
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005334
2022-04-26
2024-05-04
Loading full text...

Full text loading...

References

  1. Finkmann W, Altendorf K, Stackebrandt E, Lipski A. Characterization of N2o-producing xanthomonas-like isolates from biofilters as stenotrophomonas nitritireducens sp. nov., luteimonas mephitis gen. nov., sp. nov. and pseudoxanthomonas broegbernensis gen. nov., sp. nov. Int J Syst Evol Microbiol 2000; 50:273–282 [View Article]
    [Google Scholar]
  2. Xiong L, An L, Zong Y, Wang M, Wang G et al. Luteimonas gilva sp. nov., isolated from farmland soil. Int J Syst Evol Microbiol 2020; 70:3462–3467 [View Article] [PubMed]
    [Google Scholar]
  3. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of prokaryotic names with standing in nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article] [PubMed]
    [Google Scholar]
  4. Huang X-X, Shang J, Xu L, Yang R, Sun J-Q. Luteimonas deserti sp. nov., a novel strain isolated from desert soil. Int J Syst Evol Microbiol 2021; 71:10 [View Article] [PubMed]
    [Google Scholar]
  5. Zhou J, Chen J, Ma J, Xu N, Xin F et al. Luteimonas wenzhouensis sp. nov., a chitinolytic bacterium isolated from a landfill soil. Curr Microbiol 2021; 78:383–388 [View Article] [PubMed]
    [Google Scholar]
  6. Lin P, Yan Z-F, Li C-T. Luteimonas cellulosilyticus sp. nov., cellulose-degrading bacterium isolated from soil in Changguangxi national wetland park, China. Curr Microbiol 2020; 77:1341–1347 [View Article] [PubMed]
    [Google Scholar]
  7. Zhang L, Wang X, Yu M, Qiao Y, Zhang X-H. Genomic analysis of Luteimonas abyssi XH031(T): insights into its adaption to the subseafloor environment of South Pacific Gyre and ecological role in biogeochemical cycle. BMC Genomics 2015; 16:1092 [View Article] [PubMed]
    [Google Scholar]
  8. Ke C-Y, Sun W-J, Li Y-B, Lu G-M, Zhang Q-Z et al. Microbial enhanced oil recovery in Baolige Oilfield using an indigenous facultative anaerobic strain Luteimonas huabeiensis sp. nov. J Pet Sci Eng 2018; 167:160–167 [View Article]
    [Google Scholar]
  9. Wang S, Yang R, Xu L, Xing Y-T, Sun J-Q. Qingshengfaniella alkalisoli gen. nov., sp. nov., a p-hydroxybenzoate-degrading strain isolated from saline soil. Int J Sys Evol Microbiol 2021; 70:004719
    [Google Scholar]
  10. Ma J-P, Wang Z, Lu P, Wang H, Waseem Ali S et al. Biodegradation of the sulfonylurea herbicide chlorimuron-ethyl by the strain Pseudomonas sp. LW3. FEMS Microbiol Lett 2009; 296:203–209 [View Article] [PubMed]
    [Google Scholar]
  11. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article] [PubMed]
    [Google Scholar]
  12. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  13. Sneath PHA, Sokal RR. Numerical Taxonomy. The Principles and Practice of Numerical Classification San Francisco: Freeman; 1973
    [Google Scholar]
  14. Rzhetsky A, Nei M. A simple method for estimating and testing minimum-evolution trees. Mol Biol Evol 1992; 9:945–967
    [Google Scholar]
  15. Rzhetsky A, Nei M. Theoretical foundation of the minimum-evolution method of phylogenetic inference. Mol Biol Evol 1993; 10:1073–1095 [View Article] [PubMed]
    [Google Scholar]
  16. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article]
    [Google Scholar]
  17. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  18. Sun J-Q, Xu L, Wang L-J, Wu X-L. Draft genome sequence of a rhodococcus strain isolated from tannery wastewater treatment sludge. Genome Announc 2015; 3:e01463–01414 [View Article] [PubMed]
    [Google Scholar]
  19. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  20. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article] [PubMed]
    [Google Scholar]
  21. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA–DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article] [PubMed]
    [Google Scholar]
  22. Emms DM, Kelly S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol 2015; 16:157 [View Article] [PubMed]
    [Google Scholar]
  23. Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol 2019; 20:238 [View Article] [PubMed]
    [Google Scholar]
  24. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  25. Smibert RM, Krieg NR. Phenotypic characterization. In Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994
    [Google Scholar]
  26. Dong XZ, Cai MY. Determinative Manual for Routine Bacteriology Beijing: Scientific Press; 2001
    [Google Scholar]
  27. Fraser SL, Jorgensen JH. Reappraisal of the antimicrobial susceptibilities of Chryseobacterium and Flavobacterium species and methods for reliable susceptibility testing. Antimicrob Agents Chemother 1997; 41:2738–2741 [View Article] [PubMed]
    [Google Scholar]
  28. Kim B-C, Jeong W-J, Kim DY, Oh H-W, Kim H et al. Paenibacillus pueri sp. nov., isolated from Pu’er tea. Int J Syst Evol Microbiol 2009; 59:1002–1006 [View Article] [PubMed]
    [Google Scholar]
  29. Fautz E, Reichenbach H. A simple test for flexirubin-type pigments. FEMS Microbiol Lett 1980; 8:87–91 [View Article]
    [Google Scholar]
  30. Oren A. Characterization of pigments of prokaryotes and their use in taxonomy and classification. In Rainey F, Oren A. eds Method Microbiol 2011 pp 261–282
    [Google Scholar]
  31. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids. MIDI Technical Note 101 Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  32. Kates M. Techniques of Lipidology, 2nd ed. Amsterdam: Elsevier; 1986
    [Google Scholar]
  33. Komagata K, Suzuki K. Lipid and cell wall analysis in bacterial systematics. Method Microbiol 1987; 19:161–207
    [Google Scholar]
  34. Lin S-Y, Hameed A, Shahina M, Liu Y-C, Hsu Y-H et al. Description of Luteimonas pelagia sp. nov., isolated from marine sediment, and emended descriptions of Luteimonas aquatica, Luteimonas composti, Luteimonas mephitis, Lysobacter enzymogenes and Lysobacter panaciterrae. Int J Syst Evol Microbiol 2016; 66:645–651 [View Article] [PubMed]
    [Google Scholar]
  35. Roh SW, Kim K-H, Nam Y-D, Chang H-W, Kim M-S et al. Luteimonas aestuarii sp. nov., isolated from tidal flat sediment. J Microbiol 2008; 46:525–529 [View Article]
    [Google Scholar]
  36. Wu G, Liu Y, Li Q, Du H, You J et al. Luteimonas huabeiensis sp. nov., isolated from stratum water. Int J Syst Evol Microbiol 2013; 63:3352–3357 [View Article] [PubMed]
    [Google Scholar]
  37. Young C-C, Kämpfer P, Chen W-M, Yen W-S, Arun AB et al. Luteimonas composti sp. nov., a moderately thermophilic bacterium isolated from food waste. Int J Syst Evol Microbiol 2007; 57:741–744 [View Article] [PubMed]
    [Google Scholar]
  38. Baik KS, Park SC, Kim MS, Kim EM, Park C et al. Luteimonas marina sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2008; 58:2904–2908 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005334
Loading
/content/journal/ijsem/10.1099/ijsem.0.005334
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error