1887

Abstract

A rod-shaped, Gram-stain-negative, aerobic and non-motile bacterium, designated strain Y4, was isolated from an aquaculture farm in Xiamen, PR China. Strain Y4 had 94.8, 93.3 and 91.8 % 16S rRNA gene sequence similarity to ZYL, HTCJW17 and MEBiC09520, respectively. The genomic DNA G+C content of strain Y4 was 42.7 mol%. The average amino acid identity and percentage of conserved proteins values between strain Y4 and type strains of the family were 57.9–58.6 % and 44.5–47.6 %, respectively. Optimal growth was observed at 28 °C, at pH 7.0 and with 2 % (w/v) NaCl. The novel strain Y4 required Ca, K and Mg ions in addition to NaCl for growth. The dominant fatty acids of strain Y4 were summed feature 3 (C 7/C 6), summed feature 8 (C 7/C 6) and C 2-OH. The polar lipid profile contained phosphatidylethanolamine, phosphatidyglycerol, three unidentified aminolipids, four unidentified aminophospholipids and two unidentified lipids. Cells contained exclusively ubiquinone Q-10. On the basis of the polyphasic analysis, strain Y4 (=MCCC 1K06278=KCTC 82926) is considered to represent a novel species in a novel genus of the family , for which the name gen. nov., sp. nov. is proposed.

Funding
This study was supported by the:
  • National Science Fund (Award 31371988)
    • Principle Award Recipient: HantaoZhou
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005327
2022-04-22
2024-05-04
Loading full text...

Full text loading...

References

  1. Oren A, Garrity GM. Valid publication of the names of forty-two phyla of prokaryotes. Int J Syst Evol Microbiol 2021; 71: [View Article] [PubMed]
    [Google Scholar]
  2. Iino T, Ohkuma M, Kamagata Y, Amachi S. Iodidimonas muriae gen. nov., sp. nov., an aerobic iodide-oxidizing bacterium isolated from brine of a natural gas and iodine recovery facility, and proposals of Iodidimonadaceae fam. nov., Iodidimonadales ord. nov., Emcibacteraceae fam. nov. and Emcibacterales ord. nov. Int J Syst Evol Microbiol 2016; 66:5016–5022 [View Article]
    [Google Scholar]
  3. Liu X, Li G, Lai Q, Sun F, Du Y et al. Emcibacter nanhaiensis gen. nov. sp. nov., isolated from sediment of the South China Sea. Antonie van Leeuwenhoek 2015; 107:893–900 [View Article] [PubMed]
    [Google Scholar]
  4. Zhao Z, Shen X, Chen W, Yu X-Y, Fu G-Y et al. Emcibacter congregatus sp. nov., isolated from sediment cultured in situ. Int J Syst Evol Microbiol 2018; 68:2846–2850 [View Article] [PubMed]
    [Google Scholar]
  5. Park MJ, Namirimu T, Yang SH, Kwon KK. Description of Luteithermobacter gelatinilyticus gen. nov., sp. nov., and Paremcibacter congregatus gen. nov., comb. nov. via reclassification of the genus Emcibacter. Int J Syst Evol Microbiol 2020; 70:4691–4697 [View Article]
    [Google Scholar]
  6. Wakai S, Ito K, Iino T, Tomoe Y, Mori K et al. Corrosion of iron by iodide-oxidizing bacteria isolated from brine in an iodine production facility. Microb Ecol 2014; 68:519–527 [View Article] [PubMed]
    [Google Scholar]
  7. Gittel A, Kofoed MVW, Sørensen KB, Ingvorsen K, Schramm A. Succession of Deferribacteres and Epsilonproteobacteria through a nitrate-treated high-temperature oil production facility. Syst Appl Microbiol 2012; 35:165–174 [View Article] [PubMed]
    [Google Scholar]
  8. Fang JS, Shizuka A, Kato C, Schouten S. Microbial diversity of cold-seep sediments in Sagami Bay, Japan, as determined by 16S rRNA gene and lipid analyses. FEMS Microbiol Ecol 2006; 57:429–441 [View Article] [PubMed]
    [Google Scholar]
  9. Li HR, Yu Y, Luo W, Zeng YX, Chen B. Bacterial diversity in surface sediments from the Pacific Arctic Ocean. Extremophiles 2009; 13:233–246 [View Article] [PubMed]
    [Google Scholar]
  10. Alain K, Harder J, Widdel F, Zengler K. Anaerobic utilization of toluene by marine alpha- and gammaproteobacteria reducing nitrate. Microbiology 2012; 158:2946–2957 [View Article] [PubMed]
    [Google Scholar]
  11. Hori S, Tsuchiya M, Nishi S, Arai W, Yoshida T et al. Active bacterial flora surrounding Foraminifera (Xenophyophorea) living on the deep-sea floor. Biosci Biotechnol Biochem 2013; 77:381–384 [View Article] [PubMed]
    [Google Scholar]
  12. Barco RA, Hoffman CL, Ramírez GA, Toner BM, Edwards KJ et al. In-situ incubation of iron-sulfur mineral reveals a diverse chemolithoautotrophic community and a new biogeochemical role for Thiomicrospira. Environ Microbiol 2017; 19:1322–1337 [View Article] [PubMed]
    [Google Scholar]
  13. Shaw AK, Halpern AL, Beeson K, Tran B, Venter JC et al. It’s all relative: ranking the diversity of aquatic bacterial communities. Environ Microbiol 2008; 10:2200–2210 [View Article] [PubMed]
    [Google Scholar]
  14. Maeda R, Nagashima H, Widada J, Iwata K, Omori T. Novel marine carbazole-degrading bacteria. FEMS Microbiol Lett 2009; 292:203–209 [View Article] [PubMed]
    [Google Scholar]
  15. Walsh DA, Zaikova E, Howes CG, Song YC, Wright JJ et al. Metagenome of a versatile chemolithoautotroph from expanding oceanic dead zones. Science 2009; 326:578–582 [View Article] [PubMed]
    [Google Scholar]
  16. Singh SK, Kotakonda A, Kapardar RK, Kankipati HK, Sreenivasa Rao P et al. Response of bacterioplankton to iron fertilization of the Southern Ocean, Antarctica. Front Microbiol 2015; 6:16 [View Article] [PubMed]
    [Google Scholar]
  17. Gao B, Shang X, Li L, Di W, Zeng R. Phylogenetically diverse, acetaldehyde-degrading bacterial community in the deep sea water of the West Pacific Ocean. Acta Oceanol Sin 2018; 37:54–64 [View Article]
    [Google Scholar]
  18. Schmidtova J, Hallam SJ, Baldwin SA. Phylogenetic diversity of transition and anoxic zone bacterial communities within a near-shore anoxic basin: Nitinat Lake. Environ Microbiol 2009; 11:3233–3251 [View Article] [PubMed]
    [Google Scholar]
  19. Toupoint N, Mohit V, Linossier I, Bourgougnon N, Myrand B et al. Effect of biofilm age on settlement of Mytilus edulis. Biofouling 2012; 28:985–1001 [View Article] [PubMed]
    [Google Scholar]
  20. Santelli CM, Orcutt BN, Banning E, Bach W, Moyer CL et al. Abundance and diversity of microbial life in ocean crust. Nature 2008; 453:653–656 [View Article] [PubMed]
    [Google Scholar]
  21. Sylvan JB, Toner BM, Edwards KJ. Life and death of deep-sea vents: bacterial diversity and ecosystem succession on inactive hydrothermal sulfides. mBio 2012; 3:e00279-11 [View Article] [PubMed]
    [Google Scholar]
  22. Meier DV, Pjevac P, Bach W, Markert S, Schweder T et al. Microbial metal-sulfide oxidation in inactive hydrothermal vent chimneys suggested by metagenomic and metaproteomic analyses. Environ Microbiol 2019; 21:682–701 [View Article] [PubMed]
    [Google Scholar]
  23. Li J, Su L, Wang F, Yang J, Gu L et al. Elucidating the biomineralization of low-temperature hydrothermal precipitates with varying Fe, Si contents: Indication from ultrastructure and microbiological analyses. Deep Sea Res Part I Oceanogr Res Pap 2020; 157:103208 [View Article]
    [Google Scholar]
  24. Nigro LM, Harris K, Orcutt BN, Hyde A, Clayton-Luce S et al. Microbial communities at the borehole observatory on the Costa Rica Rift flank (Ocean Drilling Program Hole 896A). Front Microbiol 2012; 3:232 [View Article] [PubMed]
    [Google Scholar]
  25. Verna C, Ramette A, Wiklund H, Dahlgren TG, Glover AG et al. High symbiont diversity in the bone-eating worm Osedax mucofloris from shallow whale-falls in the North Atlantic. Environ Microbiol 2010; 12:2355–2370 [View Article] [PubMed]
    [Google Scholar]
  26. Dishaw LJ, Flores-Torres J, Lax S, Gemayel K, Leigh B et al. The gut of geographically disparate Ciona intestinalis harbors a core microbiota. PLoS One 2014; 9:e93386 [View Article] [PubMed]
    [Google Scholar]
  27. Darjany LE, Whitcraft CR, Dillon JG. Lignocellulose-responsive bacteria in a southern California salt marsh identified by stable isotope probing. Front Microbiol 2014; 5:9 [View Article] [PubMed]
    [Google Scholar]
  28. Zhao Z, Zhang R-A, Fu G-Y, Zhang R, Nie Y-F et al. The complete genome of Emcibacter congregatus ZYLT, a marine bacterium encoding a CRISPR-Cas 9 immune system. Curr Microbiol 2020; 77:762–768 [View Article] [PubMed]
    [Google Scholar]
  29. Li Y, Wang Y, Wang Y, Lin F, Zhu H et al. Pseudooceanicola aestuarii sp. nov., isolated from the Jiulong River Estuary in PR China. Int J Syst Evol Microbiol 2020; 70:6220–6225 [View Article] [PubMed]
    [Google Scholar]
  30. Lane DJ. 16S/23S rRNA Sequencing. In Stackebrandt E, Goodfellow M. eds Nucleic Acid Techniques in Bacterial Systematics Chichester, UK: John Wiley and Sons; pp 1991–175
    [Google Scholar]
  31. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  32. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acids Res 1994; 22:4673–4680 [View Article] [PubMed]
    [Google Scholar]
  33. Saitou N, Nei M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425
    [Google Scholar]
  34. Rzhetsky A, Nei M. A simple method for estimating and testing minimum evolution trees. Mol Biol Evol 1992; 9:945–967
    [Google Scholar]
  35. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  36. Tamura K, Stecher G, Kumar S, Battistuzzi FU. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol Biol Evol 2021; 38:3022–3027 [View Article] [PubMed]
    [Google Scholar]
  37. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  38. Li R, Yu C, Li Y, Lam T-W, Yiu S-M et al. SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 2009; 25:1966–1967 [View Article] [PubMed]
    [Google Scholar]
  39. Delcher AL, Bratke KA, Powers EC, Salzberg SL. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 2007; 23:673–679 [View Article] [PubMed]
    [Google Scholar]
  40. Lowe TM, Chan PP. tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res 2016; 44:W54–7 [View Article] [PubMed]
    [Google Scholar]
  41. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  42. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  43. Rodriguez-R LM, Konstantinidis KT. Bypassing cultivation to identify bacterial species. Microbe Magazine 2014; 9:111–118 [View Article]
    [Google Scholar]
  44. Qin Q-L, Xie B-B, Zhang X-Y, Chen X-L, Zhou B-C et al. A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol 2014; 196:2210–2215 [View Article] [PubMed]
    [Google Scholar]
  45. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:10 [View Article] [PubMed]
    [Google Scholar]
  46. Lefort V, Desper R, Gascuel O. FastME 2.0: A comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol 2015; 32:2798–2800 [View Article] [PubMed]
    [Google Scholar]
  47. Hucker GJ. A new modification and application of the gram stain. J Bacteriol 1921; 6:395–397 [View Article] [PubMed]
    [Google Scholar]
  48. Tittsler RP, Sandholzer LA. The use of semi-solid agar for the detection of bacterial motility. J Bacteriol 1936; 31:575–580 [View Article] [PubMed]
    [Google Scholar]
  49. Dong XZ, Cai MY. Determinative Manual for Routine Bacteriology Beijing: Scientific Press; 2001
    [Google Scholar]
  50. Bae SS, Kwon KK, Yang SH, Lee H-S, Kim S-J et al. Flagellimonas eckloniae gen. nov., sp. nov., a mesophilic marine bacterium of the family Flavobacteriaceae, isolated from the rhizosphere of Ecklonia kurome. Int J Syst Evol Microbiol 2007; 57:1050–1054 [View Article] [PubMed]
    [Google Scholar]
  51. Komagata K, Suzuki K. Lipid and cell-wall analysis in bacterial systematics. Method Microbiol 1987; 19:161–207
    [Google Scholar]
  52. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids. MIDI Technical Note 101 Newark, Delaware, USA: MIDI Inc; 1990
    [Google Scholar]
  53. Collins MD, Jones D. Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. J Appl Bacteriol 1980; 48:459–470 [View Article]
    [Google Scholar]
  54. Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol 2005; 187:6258–6264 [View Article] [PubMed]
    [Google Scholar]
  55. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  56. Konstantinidis KT, Rosselló-Móra R, Amann R. Uncultivated microbes in need of their own taxonomy. ISME J 2017; 11:2399–2406 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005327
Loading
/content/journal/ijsem/10.1099/ijsem.0.005327
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error