1887

Abstract

A Gram-stain-negative, aerobic and non-spore-forming bacterial strain, designated 20TX0172, was isolated from a rotting onion bulb in Texas, USA. The results of phylogenetic analysis based on the 16S rRNA sequence indicated that the novel strain represented a member of the genus and had the greatest sequence similarities with 520-20 (99.3 %), CFBP 2431 (99.2 %), and 11K1 (99.2 %) but the 16S rRNA phylogenetic tree displayed a monophyletic clade with CFBP 5447. In the phylogenetic trees based on sequences of four housekeeping genes (, , and ), the novel strain formed a separate branch, indicating that the strain was distinct phylogenetically from known species of the genus . The genome-sequence-derived average nucleotide identity (ANI) and digital DNA–DNA hybridization (dDDH) values between the novel isolate and DSM 16733 were 86.7 and 32.7 %, respectively. These values were below the accepted species cutoff threshold of 96 % ANI and 70 % dDDH, affirming that the strain represented a novel species. The genome size of the novel species was 5.98 Mbp with a DNA G+C content of 60.8 mol%. On the basis of phenotypic and genotypic characteristics, strain 20TX0172 represents a novel species of the genus . The name sp. nov. is proposed. The type strain is 20TX0172 (=NCIMB 15426=CIP 112022).

Funding
This study was supported by the:
  • Agricultural Research Service (Award 2019-51181-30013)
    • Principle Award Recipient: SubasMalla
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005311
2022-04-20
2022-06-25
Loading full text...

Full text loading...

References

  1. Peix A, Ramírez-Bahena M-H, Velázquez E. Historical evolution and current status of the taxonomy of genus Pseudomonas. Infect Genet Evol 2009; 9:1132–1147 [View Article] [PubMed]
    [Google Scholar]
  2. Gomila M, Peña A, Mulet M, Lalucat J, García-Valdés E. Phylogenomics and systematics in Pseudomonas. Front Microbiol 2015; 6:214 [View Article] [PubMed]
    [Google Scholar]
  3. Pavlov MS, Lira F, Martinez JL, Olivares-Pacheco J, Marshall SH. Pseudomonas fildesensis sp. nov., a psychrotolerant bacterium isolated from Antarctic soil of King George Island, South Shetland Islands. Int J Syst Evol Microbiol 2020; 70:3255–3263 [View Article] [PubMed]
    [Google Scholar]
  4. López NI, Pettinari MJ, Stackebrandt E, Tribelli PM, Põtter M et al. Pseudomonas extremaustralis sp. nov., a poly(3-hydroxybutyrate) producer isolated from an antarctic environment. Curr Microbiol 2009; 59:514–519 [View Article]
    [Google Scholar]
  5. Reddy GSN, Matsumoto GI, Schumann P, Stackebrandt E, Shivaji S. Psychrophilic pseudomonads from antarctica: Pseudomonas antarctica sp. nov., Pseudomonas meridiana sp. nov. and Pseudomonas proteolytica sp. nov. Int J Syst Evol Microbiol 2004; 54:713–719 [View Article]
    [Google Scholar]
  6. Schwartz H, Mohan S. Compendium of Onion and Garlic Diseases and Pests, 2nd edn. St Paul, Minnesota, USA: Am Phytopath Soc; 2008
    [Google Scholar]
  7. Myung I-S, Joa JH, Shim HS. Bacterial leaf spot of onion caused by Pseudomonas syringae pv. porri, a new disease in Korea. Plant Dis 2011; 95:1311 [View Article] [PubMed]
    [Google Scholar]
  8. Moloto VM, Goszczynska T, du Toit LJ, Coutinho TA. A new pathovar of Pseudomonas syringae, pathovar allii, isolated from onion plants exhibiting symptoms of blight. Eur J Plant Pathol 2016; 147:591–603 [View Article]
    [Google Scholar]
  9. Dutta B, Gitaitis R, Agarwal G, Coutinho T, Langston D. Pseudomonas coronafaciens sp. nov., a new phytobacterial species diverse from Pseudomonas syringae. PLoS One 2018; 13:e0208271 [View Article] [PubMed]
    [Google Scholar]
  10. Sawada H, Fujikawa T, Tsuji M, Satou M. Pseudomonas allii sp. nov., a pathogen causing soft rot of onion in Japan. Int J Syst Evol Microbiol 2021; 71:004582 [View Article]
    [Google Scholar]
  11. Sawada H, Fujikawa T, Nishiwaki Y, Horita H. Pseudomonas kitaguniensis sp. nov., a pathogen causing bacterial rot of Welsh onion in Japan. Int J Syst Evol Microbiol 2020; 70:3018–3026 [View Article] [PubMed]
    [Google Scholar]
  12. Zhao M, Tyson C, Chen H-C, Paudel S, Gitaitis R et al. Pseudomonas alliivorans sp. nov., a plant-pathogenic bacterium isolated from onion foliage in Georgia, USA. Syst Appl Microbiol 2022; 45:126278 [View Article] [PubMed]
    [Google Scholar]
  13. Peix A, Ramírez-Bahena M-H, Velázquez E. The current status on the taxonomy of Pseudomonas revisited: An update. Infect Genet Evol 2018; 57:106–116 [View Article] [PubMed]
    [Google Scholar]
  14. Palleroni NJ. The Pseudomonas story. Environ Microbiol 2010; 12:1377–1383 [View Article] [PubMed]
    [Google Scholar]
  15. Ciufo S, Kannan S, Sharma S, Badretdin A, Clark K et al. Using average nucleotide identity to improve taxonomic assignments in prokaryotic genomes at the NCBI. Int J Syst Evol Microbiol 2018; 68:2386–2392 [View Article] [PubMed]
    [Google Scholar]
  16. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA–DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article] [PubMed]
    [Google Scholar]
  17. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article] [PubMed]
    [Google Scholar]
  18. Euzéby JP. List of bacterial names with standing in nomenclature: a folder available on the Internet. Int J Syst Bacteriol 1997; 47:590–592 [View Article] [PubMed]
    [Google Scholar]
  19. Koirala S, Zhao M, Agarwal G, Gitaitis R, Stice S et al. Identification of two novel pathovars of pantoea stewartii subsp. indologenes affecting aallium sp. and millets. Phytopathology 20211509–1519
    [Google Scholar]
  20. Stice SP, Stumpf SD, Gitaitis RD, Kvitko BH, Dutta B. Pantoea ananatis genetic diversity analysis reveals limited genomic diversity as well as accessory genes correlated with onion pathogenicity. Front Microbiol 2018; 9:184 [View Article] [PubMed]
    [Google Scholar]
  21. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [View Article] [PubMed]
    [Google Scholar]
  22. Wilson KH, Blitchington RB, Greene RC. Amplification of bacterial 16S ribosomal DNA with polymerase chain reaction. J Clin Microbiol 1990; 28:1942–1946 [View Article] [PubMed]
    [Google Scholar]
  23. Webster G, Parkes RJ, Cragg BA, Newberry CJ, Weightman AJ et al. Prokaryotic community composition and biogeochemical processes in deep subseafloor sediments from the Peru Margin. FEMS Microbiol Ecol 2006; 58:65–85 [View Article] [PubMed]
    [Google Scholar]
  24. Walker AW, Martin JC, Scott P, Parkhill J, Flint HJ et al. 16S rRNA gene-based profiling of the human infant gut microbiota is strongly influenced by sample processing and PCR primer choice. Microbiome 2015; 3:26 [View Article] [PubMed]
    [Google Scholar]
  25. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [View Article] [PubMed]
    [Google Scholar]
  26. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article] [PubMed]
    [Google Scholar]
  27. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  28. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13:e1005595 [View Article] [PubMed]
    [Google Scholar]
  29. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  30. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  31. Berge O, Monteil CL, Bartoli C, Chandeysson C, Guilbaud C et al. A user’s guide to a data base of the diversity of Pseudomonas syringae and its application to classifying strains in this phylogenetic complex. PLoS One 2014; 9:e105547 [View Article] [PubMed]
    [Google Scholar]
  32. Timilsina S, Minsavage GV, Preston J, Newberry EA, Paret ML et al. Pseudomonas floridensis sp. nov., a bacterial pathogen isolated from tomato. Int J Syst Evol Microbiol 2018; 68:64–70 [View Article] [PubMed]
    [Google Scholar]
  33. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  34. Pritchard L, Glover RH, Humphris S, Elphinstone JG, Toth IK. Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens. Anal Methods 2016; 8:12–24 [View Article]
    [Google Scholar]
  35. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:1–10 [View Article] [PubMed]
    [Google Scholar]
  36. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:1–14 [View Article] [PubMed]
    [Google Scholar]
  37. Schaad NW, Jones JB, Chun W. Laboratory Guide for Identification of Plant Pathogenic Bacteria, 3rd ed. SPaul, MN, USA: APS Press; 2001
    [Google Scholar]
  38. Lelliott RA, Billing E, Hayward AC. A determinative scheme for the fluorescent plant pathogenic pseudomonads. J Appl Bacteriol 1966; 29:470–489 [View Article] [PubMed]
    [Google Scholar]
  39. Suslow TV. Application of a rapid method for Gram differentiation of plant pathogenic and saprophytic bacteria without staining. Phytopathology 1982; 72:917 [View Article]
    [Google Scholar]
  40. Moura ML, Jacques MA, Brito LM, Mourão IM, Duclos J. Tomato pith necrosis (TPN) caused by P. corrugata and P. mediterranea: severity of damages and crop loss assessment. Acta Hortic 2005; 2005:365–372 [View Article]
    [Google Scholar]
  41. Trantas EA, Sarris PF, Pentari MG, Mpalantinaki EE, Ververidis FN et al. Diversity among Pseudomonas corrugata and Pseudomonas mediterranea isolated from tomato and pepper showing symptoms of pith necrosis in Greece. Plant Pathol 2015; 64:307–318 [View Article]
    [Google Scholar]
  42. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI technical note 101. Newark, DE: MIDI Inc; 1990
  43. Burr SE, Gobeli S, Kuhnert P, Goldschmidt-Clermont E, Frey J. Pseudomonas chlororaphis subsp. piscium subsp. nov., isolated from freshwater fish. Int J Syst Evol Microbiol 2010; 60:2753–2757 [View Article]
    [Google Scholar]
  44. Achouak W, Sutra L, Heulin T, Meyer JM, Fromin N et al. Pseudomonas brassicacearum sp. nov. and Pseudomonas thivervalensis sp. nov., two root-associated bacteria isolated from Brassica napus and Arabidopsis thaliana. Int J Syst Evol Microbiol 2000; 50:9–18 [View Article] [PubMed]
    [Google Scholar]
  45. Sikorski J, Stackebrandt E, Wackernagel W. Pseudomonas kilonensis sp. nov., a bacterium isolated from agricultural soil. Int J Syst Evol Microbiol 2001; 51:1549–1555 [View Article] [PubMed]
    [Google Scholar]
  46. Liang J, Wang S, Yiming A, Fu L, Ahmad I et al. Pseudomonas bijieensis sp. nov., isolated from cornfield soil. Int J Syst Evol Microbiol 2019; 71:004676 [View Article] [PubMed]
    [Google Scholar]
  47. Zhao H, Ma Y, Wu X, Zhang L. Pseudomonas viciae sp. nov., isolated from rhizosphere of broad bean. Int J Syst Evol Microbiol 2020; 70:5012–5018 [View Article] [PubMed]
    [Google Scholar]
  48. Scarlett CM, Fletcher JT, Roberts P, Lelliott RA. Tomato pith necrosis caused by Pseudomonas corrugata n. sp. Ann Applied Biology 1978; 88:105–114 [View Article]
    [Google Scholar]
  49. Catara V, Sutra L, Morineau A, Achouak W, Christen R et al. Phenotypic and genomic evidence for the revision of Pseudomonas corrugata and proposal of Pseudomonas mediterranea sp. nov. Int J Syst Evol Microbiol 2002; 52:1749–1758 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005311
Loading
/content/journal/ijsem/10.1099/ijsem.0.005311
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error