1887

Abstract

A pink, ovoid-shaped, Gram-stain-negative, strictly aerobic and motile bacterial strain, designated ROY-5-3, was isolated from an oil production mixture from Yumen Oilfield in PR China. The strain grew at 4–42 °C (optimum, 30 °C), at pH 5–10 (optimum, 7) and with 0–5 % (w/v) NaCl (optimum, 0%). The results of phylogenetic analysis based on 16S rRNA gene sequences indicated that ROY-5-3 belongs to the genus and shared the highest pairwise similarities with CW67 (98.1%), BU-1 (97.8%), K-20 (97.7%) and HS-69 (97.3%). The average nucleotide identity and digital DNA–DNA hybridization values between ROY-5-3 and other related type strains of species were less than 84.08 and 28.60 %, respectively, both below the species delineation threshold. Pan-genomic analysis showed that the novel isolate ROY-5-3 shared 3265 core gene families with the four closely related type strains in , and the number of strain-specific gene families was 513. The major fatty acids were identified as summed feature 8 (C 6/C 7), summed feature 3 (C 6/C 7) and C. Strain ROY-5-3 contained Q-10 as the main ubiquinone and the genomic DNA G+C content was 69.8 mol%. The major polar lipids were diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine and phosphatidylglycerol. Based on the phylogenetic, morphological, physiological, chemotaxonomic and genome analyses, strain ROY-5-3 represents a novel species of the genus for which the name sp. nov. is proposed. The type strain is ROY-5-3 (=CGMCC 1.13459 =KCTC 82484).

Funding
This study was supported by the:
  • biological resources programme of chinese academy of sciences-the capacity-building project (Award KFJ-BRP-017-25)
    • Principle Award Recipient: ManCai
  • national key r & d program of china (Award 2018YFA0902100)
    • Principle Award Recipient: XiaoleiWu
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005064
2021-10-28
2024-04-29
Loading full text...

Full text loading...

References

  1. Rihs JD, Brenner DJ, Weaver RE, Steigerwalt AG, Hollis DG et al. Roseomonas, a new genus associated with bacteremia and other human infections. J Clin Microbiol 1993; 31:3275–3283 [View Article] [PubMed]
    [Google Scholar]
  2. Bibashi E, Sofianou D, Kontopoulou K, Mitsopoulos E, Kokolina E. Peritonitis due to Roseomonas fauriae in a patient undergoing continuous ambulatory peritoneal dialysis. J Clin Microbiol 2000; 38:456–457 [View Article] [PubMed]
    [Google Scholar]
  3. Subudhi CPK, Adedeji A, Kaufmann ME, Lucas GS, Kerr JR. Fatal Roseomonas gilardii bacteremia in a patient with refractory blast crisis of chronic myeloid leukemia. Clin Microbiol Infect 2001; 7:573–575 [View Article] [PubMed]
    [Google Scholar]
  4. Han XY, Pham AS, Tarrand JJ, Rolston KV, Helsel LO et al. Bacteriologic Characterization of 36 Strains of Roseomonas species and Proposal of Roseomonas mucosa sp nov and Roseomonas gilardii subsp rosea subsp nov. Am J Clin Pathol 2003; 120:256–264 [View Article] [PubMed]
    [Google Scholar]
  5. Kim SJ, Weon HY, Ahn JH, Hong SB, Seok SJ et al. Roseomonas aerophila sp. nov., isolated from air. Int J Syst Evol Microbiol 2013; 63:2334–2337 [View Article] [PubMed]
    [Google Scholar]
  6. Yoo SH, Weon HY, Noh HJ, Hong SB, Lee CM et al. Roseomonas aerilata sp. nov., isolated from an air sample. Int J Syst Evol Microbiol 2008; 58:1482–1485 [View Article] [PubMed]
    [Google Scholar]
  7. Deng Y, Sun Y, Wang H, Yu L-Y, Zhang YQ. Roseomonas harenae sp. nov., from desert gravel soil. Int J Syst Evol Microbiol 2020; 70:5711–5716 [View Article] [PubMed]
    [Google Scholar]
  8. Zhao LL, Deng Y, Sun Y, Liu HY, Yu LY et al. Roseomonas vastitatis sp. nov. isolated from Badain Jaran desert in China. Int J Syst Evol Microbiol 2020; 70:1186–1191 [View Article] [PubMed]
    [Google Scholar]
  9. Kim JY, Kim DU, Kang MS, Jang JH, Kim SJ et al. Roseomonas radiodurans sp. nov., a gamma-radiation-resistant bacterium isolated from gamma ray-irradiated soil. Int J Syst Evol Microbiol 2018; 68:2443–2447 [View Article] [PubMed]
    [Google Scholar]
  10. Hou X, Liu H, Wei S, Ding Z, Sang F et al. Roseomonas selenitidurans sp. nov., isolated from urban soil, and emended description of Roseomonas frigidaquae. Int J Syst Evol Microbiol 2020; 70:5937–5942 [View Article] [PubMed]
    [Google Scholar]
  11. Gallego V, Sánchez-Porro C, García MT, Ventosa A. Roseomonas aquatica sp. nov., isolated from drinking water. Int J Syst Evol Microbiol 2006; 56:2291–2295 [View Article] [PubMed]
    [Google Scholar]
  12. He D, Kim J-K, Jiang X-Y, Park H-Y, Sun C et al. Roseomonas sediminicola sp. nov., isolated from fresh water. Antonie Van Leeuwenhoek 2014; 105:191–197 [View Article] [PubMed]
    [Google Scholar]
  13. Zhang JY, Jiang XB, Zhu D, Wang XM, Du ZJ et al. Roseomonas bella sp. nov., isolated from lake sediment. Int J Syst Evol Microbiol 2020; 70:5473–5478 [View Article] [PubMed]
    [Google Scholar]
  14. Ko Y, Yim J, Hwang WM, Kang K, Ahn TY. Roseomonas fluminis sp. nov. isolated from sediment of a shallow stream. Int J Syst Evol Microbiol 2018; 68:782–787 [View Article] [PubMed]
    [Google Scholar]
  15. Chung EJ, Yoon HS, Kim KH, Jeon CO, Chung YR. Roseomonas oryzicola sp. nov., isolated from the rhizosphere of rice (Oryza sativa L.). Int J Syst Evol Microbiol 2015; 65:4839–4844 [View Article] [PubMed]
    [Google Scholar]
  16. Yan ZF, Lin P, Li CT, Kook M, Wang QJ et al. Roseomonas hibiscisoli sp. nov., isolated from the rhizosphere of Mugunghwa (Hibiscus syriacus). Int J Syst Evol Microbiol 2017; 67:2873–2878 [View Article] [PubMed]
    [Google Scholar]
  17. Damtab J, Nutaratat P, Boontham W, Srisuk N, Duangmal K et al. Roseomonas elaeocarpi sp. nov., isolated from olive (Elaeocarpus hygrophilus Kurz.) phyllosphere. Int J Syst Evol Microbiol 2016; 66:474–480 [View Article] [PubMed]
    [Google Scholar]
  18. Nutaratat P, Srisuk N, Duangmal K, Yurimoto H, Sakai Y et al. Roseomonas musae sp. nov., a new bacterium isolated from a banana phyllosphere. Antonie van Leeuwenhoek 2013; 103:617–624 [View Article] [PubMed]
    [Google Scholar]
  19. Li F, Huang Y, Hu W, Li Z, Wang Q et al. Roseomonas coralli sp. nov., a heavy metal resistant bacterium isolated from coral. Int J Syst Evol Microbiol 2021; 71:65 [View Article]
    [Google Scholar]
  20. Kim HM, Khan SA, Han DM, Chun BH, Jeon CO. Roseomonas algicola sp. nov., isolated from a green alga, Pediastrum duplex. Int J Syst Evol Microbiol 2020; 70:5634–5639 [View Article] [PubMed]
    [Google Scholar]
  21. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article] [PubMed]
    [Google Scholar]
  22. Cai M, Nie Y, Chi CQ, Tang YQ, Li Y et al. Crude oil as a microbial seed bank with unexpected functional potentials. Sci Rep 2015; 5:e66588 [View Article] [PubMed]
    [Google Scholar]
  23. Cai M, Wang L, Cai H, Li Y, Wang YN et al. Salinarimonas ramus sp. nov. and Tessaracoccus oleiagri sp. nov., isolated from a crude oil-contaminated saline soil. Int J Syst Evol Microbiol 2011; 61:1767–1775 [View Article] [PubMed]
    [Google Scholar]
  24. Wu D, Zhang XJ, Liu HC, Zhou YG, Wu XL et al. Azospirillum oleiclasticum sp. nov, a nitrogen-fixing and heavy oil degrading bacterium isolated from an oil production mixture of Yumen Oilfield. Syst Appl Microbiol 2021; 44:126171 [View Article] [PubMed]
    [Google Scholar]
  25. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  26. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680 [View Article] [PubMed]
    [Google Scholar]
  27. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  28. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  29. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 1971; 20:406–416
    [Google Scholar]
  30. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  31. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  32. Jiao JY, Fu L, Hua ZS, Liu L, Salam N et al. Insight into the function and evolution of the Wood–Ljungdahl pathway in Actinobacteria. ISME J 2021; 115:E1166 [View Article]
    [Google Scholar]
  33. Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 2019; 36:1925–1927 [View Article] [PubMed]
    [Google Scholar]
  34. Nguyen LT, Schmidt HA, Av H, Minh BQ. IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article] [PubMed]
    [Google Scholar]
  35. Kalyaanamoorthy S, Minh BQ, Wong TKF, Av H, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 2017; 14:587–589 [View Article] [PubMed]
    [Google Scholar]
  36. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  37. Auch AF, von Jan M, Klenk HP, Göker M. Digital DNA–DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article] [PubMed]
    [Google Scholar]
  38. Li L, Stoeckert CJ, Roos DS. Orthomcl: Identification of ortholog groups for eukaryotic genomes. Genome Res 2003; 13:2178–2189 [View Article] [PubMed]
    [Google Scholar]
  39. Ito M, Morino M, Krulwich TA. Mrp antiporters have important roles in diverse bacteria and archaea. Front Microbiol 2017; 8:2147–2325 [View Article] [PubMed]
    [Google Scholar]
  40. Singh AK, Pindi PK, Dube S, Sundareswaran VR, Shivaji S. Importance of trmE for Growth of the Psychrophile Pseudomonas syringae at Low Temperatures. Appl Environ Microbiol 2009; 75:4419–4426 [View Article] [PubMed]
    [Google Scholar]
  41. Kim J, Ha S, Park W. Expression and deletion analyses of cspE encoding cold-shock protein E in Acinetobacter oleivorans DR1. Res Microbiol 2018; 169:244–253 [View Article] [PubMed]
    [Google Scholar]
  42. Mąka Łukasz, Popowska M. Antimicrobial resistance of Salmonella spp. isolated from food. Rocz Panstw Zakl Hig 2016; 67:343–358 [PubMed]
    [Google Scholar]
  43. Meng Y-. C, Liu HC, Yang LL, Kang YQ, Zhou YG et al. Microbacterium sorbitolivorans sp. nov., a novel member of Microbacteriaceae isolated from fermentation bed in pigpen. Int J Syst Evol Microbiol 2016; 66:5556–5561 [View Article] [PubMed]
    [Google Scholar]
  44. Zhang XJ, Liu HC, Zhou YG, Wu XL, Nie Y et al. Pseudomonas saliphila sp. nov., a bacterium Isolated from Oil-Well Production Water in Qinghai Oilfield of China. Curr Microbiol 2020; 77:1924–1931 [View Article] [PubMed]
    [Google Scholar]
  45. Dong XZ, Cai MY. Determination of biochemical properties. In Manual for the Systematic Identification of General Bacteria Beijing: Science Press (in Chinese; 2001 pp 370–398
    [Google Scholar]
  46. Kim MS, Baik KS, Park SC, Rhee MS, Oh HM et al. Roseomonas frigidaquae sp. nov., isolated from a water-cooling system. Int J Syst Evol Microbiol 2009; 59:1630–1634 [View Article] [PubMed]
    [Google Scholar]
  47. Homma M, Kutsukake K, Hasebe M, Iino T, Macnab RM et al. A family of structurally related proteins in the flagellar basal body of Salmonella typhimurium. J Mol Biol 1990; 211:465–477 [View Article] [PubMed]
    [Google Scholar]
  48. Athalye M, Noble WC, Minnikin DE. Analysis of Cellular Fatty-Acids by Gas-Chromatography as a Tool in the Identification of Medically Important Coryneform Bacteria. J Appl Bacteriol 1985; 58:507–512 [View Article] [PubMed]
    [Google Scholar]
  49. Komagata K, Susuki K. Lipid and cell-wall Systematics in bacterial Systematics. Method Microbiol 1987; 19:161–207
    [Google Scholar]
  50. Collins MD, Goodfellow M, Minnikin DE. Fatty acid, isoprenoid quinone and polar lipid composition in the classification of Curtobacterium and related taxa. J Gen Microbiol 1980; 118:29–37 [View Article] [PubMed]
    [Google Scholar]
  51. Clark CM, Costa MS, Sanchez LM, Murphy BT. Coupling MALDI-TOF mass spectrometry protein and specialized metabolite analyses to rapidly discriminate bacterial function. Proc Natl Acad Sci USA 2018; 115:4981–4986 [View Article] [PubMed]
    [Google Scholar]
  52. Furuhata K, Miyamoto H, Goto K, Kato Y, Hara M et al. Roseomonas stagni sp. nov., isolated from pond water in Japan. J Gen Appl Microbiol 2008; 54:167–171 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005064
Loading
/content/journal/ijsem/10.1099/ijsem.0.005064
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error