1887

Abstract

Two isolates, MS16-SU-2 and MS18-SU-3, obtained from fermented mangosteen peel in vinegar were suggested to constitute a new species assignable to the genus based on the results of 16S rRNA gene sequencing. The two isolates showed the highest sequence similarity (98.58%) to NBRC 16470 and LMG 23690. However, the calculated similarity values were lower than the threshold for species demarcation. The phylogenetic analysis showed that the branches of the two isolates were separated from other species, and the two isolates constituted a new species in the genus . The genomic DNA of isolate MS16-SU-2 was sequenced. The assembled genome of the isolate was analysed, and the results showed that the highest average nucleotide identity value of 75.9 % was with JCM 25143 and the highest digital DNA–DNA hybridization value of 25.1 % was with LMG 1636, which were lower than the cutoff values for species delineation. The phylogenetic tree based on the genome sequences showed that the lineage of isolate MS16-SU-2 was most closely related to JCM 25143 and TBRC 1719, but separated from the branches of these two species. In addition, the two isolates could be distinguished from the type strains of closely related species by their phenotypic characteristics and MALDI-TOF profiles. Therefore, the two isolates, MS16-SU-2 (=TBRC 12339=LMG 32243) and MS18-SU-3 (=TBRC 12305), can be assigned to an independent species within the genus , and the name of sp. nov. is proposed for the two isolates.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005052
2021-10-18
2024-04-29
Loading full text...

Full text loading...

References

  1. Hördt A, López MG, Meier-Kolthoff JP, Schleuning M, Weinhold L-M et al. Analysis of 1000+ type-strain genomes substantially improves taxonomic classification of Alphaproteobacteria. Front Microbiol 2020; 11:468 [View Article] [PubMed]
    [Google Scholar]
  2. Parte AC. LPSN – List of Prokaryotic names with Standing in Nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 2018; 68:1825–1829 [View Article] [PubMed]
    [Google Scholar]
  3. Yamada Y, Yukphan P. Genera and species in acetic acid bacteria. Int J Food Microbiol 2008; 125:15–24 [View Article] [PubMed]
    [Google Scholar]
  4. Yukphan P, Potacharoen W, Tanasupawat S, Tanticharoen M, Yamada Y. Asaia krungthepensis sp. nov., an acetic acid bacterium in the alpha-Proteobacteria. Int J Syst Evol Microbiol 2004; 54:313–316 [View Article] [PubMed]
    [Google Scholar]
  5. Ezaki T, Yamamoto N, Ninomiya K, Suzuki S, Yabuuchi E. Transfer of Peptococcus indolicus, Peptococcus asaccharolyticus, Peptococcus prevotii, and Peptococcus magnus to the genus Peptostreptococcus and proposal of Peptostreptococcus tetradius sp. nov. Int J Syst Evol Microbiol 1983; 33:683–698 [View Article]
    [Google Scholar]
  6. Saito H, Miura K-I. Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochimica et Biophysica Acta 1963; 72:619–629 [View Article]
    [Google Scholar]
  7. Marmur J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 1961; 3:208–218 [View Article]
    [Google Scholar]
  8. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article] [PubMed]
    [Google Scholar]
  9. Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article] [PubMed]
    [Google Scholar]
  10. Tindall BJ, Rosselló-Móra R, Busse H-J, Ludwig W, Kämpfer P et al. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 2010; 60:249–266 [View Article] [PubMed]
    [Google Scholar]
  11. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  12. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article] [PubMed]
    [Google Scholar]
  13. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  14. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  15. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993; 10:512–526 [View Article] [PubMed]
    [Google Scholar]
  16. Nei M, Kumar S. Molecular Evolution and Phylogenetics New York: Oxford University Press; 2000
    [Google Scholar]
  17. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  18. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  19. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  20. Afgan E, Baker D, van den Beek M, Blankenberg D, Bouvier D et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucleic Acids Res 2016; 44:W3–W10 [View Article] [PubMed]
    [Google Scholar]
  21. Andrews S. FastQC: a quality control tool for high throughput sequence data Babraham Institute, UK; 2010 http://www.bioinformatics.babraham.ac.uk/projects/fastqc
  22. Krueger F. Trim Galore!: A wrapper tool around Cutadapt and FastQC to consistently apply quality and adapter trimming to FastQ files Babraham Institute, UK; 2015 http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
  23. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13:e1005595 [View Article] [PubMed]
    [Google Scholar]
  24. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics 2013; 29:1072–1075 [View Article] [PubMed]
    [Google Scholar]
  25. Lee I, Chalita M, Ha S-M, Na S-I, Yoon S-H et al. ContEst16S: An algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int J Syst Evol Microbiol 2017; 67:2053–2057 [View Article] [PubMed]
    [Google Scholar]
  26. Grissa I, Vergnaud G, Pourcel C. CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res 2007; 35:W52–W57 [View Article] [PubMed]
    [Google Scholar]
  27. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article] [PubMed]
    [Google Scholar]
  28. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  29. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: A web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article] [PubMed]
    [Google Scholar]
  30. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  31. Rosselló-Móra R, Amann R. Past and future species definitions for Bacteria and Archaea. Syst Appl Microbiol 2015; 38:209–216 [View Article] [PubMed]
    [Google Scholar]
  32. Hu X, Friedberg I. SwiftOrtho: A fast, memory-efficient, multiple genome orthology classifier. GigaScience 2019; 8:giz118 [View Article] [PubMed]
    [Google Scholar]
  33. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J et al. BLAST+: architecture and applications. BMC Bioinformatics 2009; 10:421 [View Article] [PubMed]
    [Google Scholar]
  34. Yang F, Zhu Q-X, Tang D-M, Zhao M-Y. Clustering protein sequences using affinity propagation based on an improved similarity measure. Evolutionary Bioinformatics 2009; 5:EBO [View Article]
    [Google Scholar]
  35. Rozewicki J, Li S, Amada KM, Standley DM, Katoh K. MAFFT-DASH: integrated protein sequence and structural alignment. Nucleic Acids Res 2019; 47:W5–W10 [View Article] [PubMed]
    [Google Scholar]
  36. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009; 25:1972–1973 [View Article] [PubMed]
    [Google Scholar]
  37. Price MN, Dehal PS, Arkin AP. FastTree 2 – approximately maximum-likelihood trees for large alignments. PloS one 2010; 5:e9490 [View Article] [PubMed]
    [Google Scholar]
  38. Iino T, Suzuki R, Kosako Y, Ohkuma M, Komagata K et al. Acetobacter okinawensis sp. nov., Acetobacter papayae sp. nov., and Acetobacter persicus sp. nov.; novel acetic acid bacteria isolated from stems of sugarcane, fruits, and a flower in Japan. J Gen Appl Microbiol 2012; 58:235–243 [View Article] [PubMed]
    [Google Scholar]
  39. Lisdiyanti P, Kawasaki H, Seki T, Yamada Y, Uchimura T et al. Systematic study of the genus Acetobacter with descriptions of Acetobacter indonesiensis sp. nov., Acetobacter tropicalis sp. nov., Acetobacter orleanensis (Henneberg 1906) comb. nov., Acetobacter lovaniensis (Frateur 1950) comb. nov., and Acetobacter estunensis (Carr 1958) comb. nov. J Gen Appl Microbiol 2000; 46:147–165 [View Article] [PubMed]
    [Google Scholar]
  40. Lisdiyanti P, Kawasaki H, Seki T, Yamada Y, Uchimura T et al. Identification of Acetobacter strains isolated from Indonesian sources, and proposals of Acetobacter syzygii sp. nov., Acetobacter cibinongensis sp. nov., and Acetobacter orientalis sp. nov. J Gen Appl Microbiol 2001; 47:119–131 [View Article] [PubMed]
    [Google Scholar]
  41. Ndoye B, Cleenwerck I, Engelbeen K, Dubois-Dauphin R, Guiro AT et al. Acetobacter senegalensis sp. nov., a thermotolerant acetic acid bacterium isolated in Senegal (sub-Saharan Africa) from mango fruit (Mangifera indica L). Int J Syst Evol Microbiol 2007; 57:1576–1581 [View Article] [PubMed]
    [Google Scholar]
  42. Pitiwittayakul N, Theeragool G, Yukphan P, Chaipitakchonlatarn W, Malimas T et al. Acetobacter suratthanensis sp. nov., an acetic acid bacterium isolated in Thailand. Ann Microbiol 2016; 66:1157–1166 [View Article]
    [Google Scholar]
  43. Asai T, Iizuka H, Komagata K. The flagellation and taxonomy of genera Gluconobacter and Acetobacter with reference to the existence of intermediate strains. J Gen Appl Microbiol 1964; 10:95–126 [View Article]
    [Google Scholar]
  44. Gosselé F, Swings J, De Ley J. A rapid, simple and simultaneous detection of 2-keto-, 5-keto-and 2,5-diketogluconic acids by thin-layer chromatography in culture media of acetic acid bacteria. Zentralblatt für Bakteriologie 1980; 1:178–181 [View Article]
    [Google Scholar]
  45. Kersters K, Lisdiyanti P, Komagata K, Swings J. The family Acetobacteraceae: the genera Acetobacter, Acidomonas, Asaia, Gluconacetobacter, Gluconobacter, and Kozakia. In The Prokaryotes New York: Springer; 2006 pp 163–200
    [Google Scholar]
  46. Swings J, Monique G, Karel K. Phenotypic identification of acetic acid bacteria. Board RG, Jones D, Skinner FA. eds In Identification Methods in Applied and Environmental Microbiology Vol 29 Oxford, UK: Blackwell Scientific; 1992 pp 103–110
    [Google Scholar]
  47. Yamada Y, Okada Y, Kondo K. Isolation and characterization of “polarly flagellated intermediate strains” in acetic acid bacteria. J Gen Appl Microbiol 1976; 22:237–245 [View Article]
    [Google Scholar]
  48. Yamada Y, Hosono R, Lisdyanti P, Widyastuti Y, Saono S et al. Identification of acetic acid bacteria isolated from Indonesian sources, especially of isolates classified in the genus Gluconobacter. J Gen Appl Microbiol 1999; 45:23–28 [View Article] [PubMed]
    [Google Scholar]
  49. Yukphan P, Malimas T, Muramatsu Y, Potacharoen W, Tanasupawat S et al. Neokomagataea gen. nov., with descriptions of Neokomagataea thailandica sp. nov. and Neokomagataea tanensis sp. nov., osmotolerant acetic acid bacteria of the α-Proteobacteria. Biosci Biotechnol Biochem 2011; 75:419–426 [View Article]
    [Google Scholar]
  50. Cleenwerck I, Vandemeulebroecke K, Janssens D, Swings J. Re-examination of the genus Acetobacter, with descriptions of Acetobacter cerevisiae sp. nov. and Acetobacter malorum sp. nov. Int J Syst Evol Microbiol 2002; 52:1551–1558 [View Article] [PubMed]
    [Google Scholar]
  51. Komagata K, Suzuki K-I. Lipid and cell-wall analysis in bacterial systematics. Colwell RR, Grigorova R. eds In Methods in Microbiology 19: Academic Press; 1988 pp 161–207
    [Google Scholar]
  52. Tamaoka J, Katayama-Fujimura Y, Kuraishi H. Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacteriol 1983; 54:31–36 [View Article]
    [Google Scholar]
  53. Cleenwerck I, Camu N, Engelbeen K, De Winter T, Vandemeulebroecke K et al. Acetobacter ghanensis sp. nov., a novel acetic acid bacterium isolated from traditional heap fermentations of Ghanaian cocoa beans. Int J Syst Evol Microbiol 2007; 57:1647–1652 [View Article] [PubMed]
    [Google Scholar]
  54. Spitaels F, Li L, Wieme A, Balzarini T, Cleenwerck I et al. Acetobacter lambici sp. nov., isolated from fermenting lambic beer. Int J Syst Evol Microbiol 2014; 64:1083–1089 [View Article] [PubMed]
    [Google Scholar]
  55. Matsuda N, Matsuda M, Notake S, Yokokawa H, Kawamura Y et al. Evaluation of a simple protein extraction method for species identification of clinically relevant Staphylococci by matrix-assisted laser desorption ionization–time of flight mass spectrometry. J Clin Microbiol 2012; 50:3862–3866 [View Article] [PubMed]
    [Google Scholar]
  56. Sasser M. eds Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids Technical Note # 1012001 Newark: MIDI Inc;
    [Google Scholar]
  57. Wu L, McCluskey K, Desmeth P, Liu S, Hideaki S et al. The global catalogue of microorganisms 10K type strain sequencing project: closing the genomic gaps for the validly published prokaryotic and fungi species. GigaScience 2018; 7: [View Article] [PubMed]
    [Google Scholar]
  58. Cleenwerck I, Gonzalez A, Camu N, Engelbeen K, De Vos P et al. Acetobacter fabarum sp. nov., an acetic acid bacterium from a Ghanaian cocoa bean heap fermentation. Int J Syst Evol Microbiol 2008; 58:2180–2185 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005052
Loading
/content/journal/ijsem/10.1099/ijsem.0.005052
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error