1887

Abstract

A Gram-stain-positive, aerobic, endospore-forming bacterial strain, isolated from the rhizosphere of , was studied for its detailed taxonomic allocation. Based on 16S rRNA gene sequence similarity comparisons, strain JJ-447 was shown to be a member of the genus , most closely related to the type strain of (97.8 %). The 16S rRNA gene sequence similarity values to all other species were below 97.0 %. DNA–DNA hybridization (DDH) values with the type strain of were 35.9 % (reciprocal 27%), respectively. The average nucleotide identity and DDH values with the type strain of were 84.86 and 28.9 %, respectively. The quinone system of strain JJ-447 consisted exclusively of menaquinones and the major component was MK-7 (96.4 %) but minor amounts of MK–6 (3.6 %) were detected as well. The polar lipid profile consisted of the major components diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and an unidentified aminolipid. Major fatty acids were iso- and anteiso-branched with the major compounds anteiso-C and iso-C. Physiological and biochemical characteristics allowed a further phenotypic differentiation of strain JJ-447 from the most closely related species on the basis of -glucose, -arabinose and -mannose assimilation and other physiological tests. Thus, JJ-447 represents a novel species of the genus , for which the name sp. nov. is proposed, with JJ-447 (=LMG 31601=CCM 9021=CIP 111802) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005051
2021-10-21
2022-01-27
Loading full text...

Full text loading...

References

  1. Ash C, Priest FG, Collins MD. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Antonie van Leeuwenhoek 1993; 64:253–260 [View Article]
    [Google Scholar]
  2. Carro L, Flores-Félix JD, Cerda-Castillo E, Ramírez-Bahena MH, Igual JM et al. Paenibacillus endophyticus sp. nov., isolated from nodules of Cicer arietinum . Int J Syst Evol Microbiol 2013; 63:4433–4438 [View Article] [PubMed]
    [Google Scholar]
  3. Lai WA, Hameed A, Lin SY, Hung MH, Hsu YH et al. Paenibacillus medicaginis sp. nov. a chitinolytic endophyte isolated from a root nodule of alfalfa (Medicago sativa L). Int J Syst Evol Microbiol 2015; 65:3853–3860 [View Article] [PubMed]
    [Google Scholar]
  4. Kittiwongwattana C, Thawai C. Paenibacillus lemnae sp. nov., an endophytic bacterium of duckweed (Lemna aequinoctialis). Int J Syst Evol Microbiol 2015; 65:107–112 [View Article] [PubMed]
    [Google Scholar]
  5. Gao JL, Lv FY, Wang XM, Qiu TL, Yuan M et al. Paenibacillus wenxiniae sp. nov., a nifH gene -harbouring endophytic bacterium isolated from maize. Antonie van Leeuwenhoek 2015; 108:1015–1022
    [Google Scholar]
  6. Ma Y, Xia Z, Liu X, Chen S. Paenibacillus sabinae sp. nov., a nitrogen-fixing species isolated from the rhizosphere soils of shrubs. Int J Syst Evol Microbiol 2007; 57:6–11 [View Article] [PubMed]
    [Google Scholar]
  7. Kim BC, Lee KH, Kim MN, Kim EM, Min SR et al. Paenibacillus pini sp. nov., a cellulolytic bacterium isolated from the rhizosphere of pine tree. J Microbiol 2009; 47:699–704 [View Article] [PubMed]
    [Google Scholar]
  8. Kim BC, Lee KH, Kim MN, Kim EM, Rhee MS et al. Paenibacillus pinihumi sp. nov., a cellulolytic bacterium isolated from the rhizosphere of Pinus densiflora . J Microbiol 2009; 47:530–535 [View Article] [PubMed]
    [Google Scholar]
  9. Hong YY, Ma YC, Zhou YG, Gao F, Liu HC et al. Paenibacillus sonchi sp. nov., a nitrogen-fixing species isolated from the rhizosphere of Sonchus oleraceus . Int J Syst Evol Microbiol 2009; 59:2656–2661 [View Article] [PubMed]
    [Google Scholar]
  10. Beneduzi A, Costa PB, Parma M, Melo IS, Bodanese-Zanettini MH et al. Paenibacillus riograndensis sp. nov., a nitrogen-fixing species isolated from the rhizosphere of Triticum aestivum . Int J Syst Evol Microbiol 2010; 60:128–133 [View Article] [PubMed]
    [Google Scholar]
  11. Zhang L, Gao JS, Zhang S, Ali Sheirdil R, Wang XC et al. Paenibacillus rhizoryzae sp. nov., isolated from rice rhizosphere. Int J Syst Evol Microbiol 2015; 65:3053–3059 [View Article] [PubMed]
    [Google Scholar]
  12. Zhang J, Wang ZT, Yu HM, Ma Y. Paenibacillus catalpae sp. nov., isolated from the rhizosphere soil of Catalpa speciosa . Int J Syst Evol Microbiol 2013; 63:1776–1781 [View Article] [PubMed]
    [Google Scholar]
  13. Wang DS, Jiang YY, Wei XM, Lai HX, Xue QH. Paenibacillus quercus sp. nov., isolated from rhizosphere of Quercus aliena var. acuteserrata . Antonie van Leeuwenhoek 2014; 105:1173–1178 [View Article]
    [Google Scholar]
  14. Son JS, Kang HU, Ghim SY. Paenibacillus dongdonensis sp. nov., isolated from rhizospheric soil of Elymus tsukushiensis . Int J Syst Evol Microbiol 2014; 64:2865–2870 [View Article] [PubMed]
    [Google Scholar]
  15. Han TY, Tong XM, Wang YW, Wang HM, Chen XR et al. Paenibacillus populi sp. nov., a novel bacterium isolated from the rhizosphere of Populus alba . Antonie van Leeuwenhoek 2015; 108:659–666 [View Article]
    [Google Scholar]
  16. Liu Y, Zhai L, Wang R, Zhao R, Zhang X et al. Paenibacillus zeae sp. nov., isolated from maize (Zea mays L.) seeds. Int J Syst Evol Microbiol 2015; 65:4533–4538 [View Article] [PubMed]
    [Google Scholar]
  17. Rivas R, Mateos PF, Martínez-Molina E, Velázquez E. Paenibacillus phyllosphaerae sp. nov., a xylanolytic bacterium isolated from the phyllosphere of Phoenix dactylifera . Int J Syst Evol Microbiol 2005; 55:743–746 [View Article] [PubMed]
    [Google Scholar]
  18. Rivas R, García-Fraile P, Mateos PF, Martínez-Molina E, Velázquez E. Paenibacillus cellulosilyticus sp. nov., a cellulolytic and xylanolytic bacterium isolated from the bract phyllosphere of Phoenix dactylifera . Int J Syst Evol Microbiol 2006; 56:2777–2781 [View Article] [PubMed]
    [Google Scholar]
  19. Grady EN, MacDonald J, Liu L, Richman A, Yuan ZC. Current knowledge and perspectives of Paenibacillus: a review. Microb Cell Fact 2016; 15:203 [View Article] [PubMed]
    [Google Scholar]
  20. Lane DJ. 16S/23S rRNA sequencing. Stackebrandt E, Goodfellow M. eds In Nucleic acid techniques in bacterial systematics Chichester: Wiley; 1991 pp 115–175
    [Google Scholar]
  21. Coloqhoun JA. Discovery of Deep-Sea Actinomycetes. PhD Dissertation. Research School of Biosciences University of Kent; Canterbury: 1997
    [Google Scholar]
  22. Schauss T, Busse H-J, Golke J, Kämpfer P, Glaeser SP. Empedobacter stercoris sp. nov., isolated from an input sample of a biogas plant. Int J Syst Evol Microbiol 2015; 65:3746–3753 [View Article] [PubMed]
    [Google Scholar]
  23. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  24. Brosius J, Palmer ML, Kennedy PJ, Noller HF. Complete nucleotide-sequence of a 16S ribosomal-RNA gene from Escherichia coli . Proc Natl Acad Sci USA 1978; 75:4801–4805 [View Article] [PubMed]
    [Google Scholar]
  25. Ludwig W, Strunk O, Westram R, Richter L, Meier H et al. ARB: a software environment for sequence data. Nucleic Acids Res 2004; 32:1363–1371 [View Article] [PubMed]
    [Google Scholar]
  26. Yarza P, Richter M, Peplies J, Euzeby J, Amann R et al. The all-species living tree project: A 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 2008; 31:241–250 [View Article] [PubMed]
    [Google Scholar]
  27. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012; 28:1823–1829 [View Article] [PubMed]
    [Google Scholar]
  28. Stamatakis A. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006; 22:2688–2690 [View Article] [PubMed]
    [Google Scholar]
  29. Felsenstein J. PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. Department of Genome Sciences Seattle: University of Washington; 2005
    [Google Scholar]
  30. Felsenstein J. Confidence limits of phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  31. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 2018; 9:5114 [View Article] [PubMed]
    [Google Scholar]
  32. Criscuolo A. A fast alignment-free bioinformatics procedure to infer accurate distance-based phylogenetic trees from genome assemblies. Res Ideas Outcomes 2019; 5:e36178 [View Article]
    [Google Scholar]
  33. Criscuolo A. On the transformation of minhash-based uncorrected distances into proper evolutionary distances for phylogenetic inference. F1000Res 2020; 9:1309 [View Article] [PubMed]
    [Google Scholar]
  34. Ziemke F, Höfle MG, Lalucat J, Rosselló-Mora R. Reclassification of Shewanella putrefaciens Owen’s genomic group II as Shewanella baltica sp. nov. Int J Syst Bacteriol 1998; 48:179–186 [View Article] [PubMed]
    [Google Scholar]
  35. Pitcher DG, Saunders NA, Owen RJ. Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 1989; 8:151–156 [View Article]
    [Google Scholar]
  36. Gerhardt P, Murray RGE, Wood WA, Krieg NR. Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994
    [Google Scholar]
  37. Moaledj K. Comparison of Gram-staining and alternate methods, KOH test and aminopeptidase activity in aquatic bacteria: their application to numerical taxonomy. J Microbiol Methods 1986; 5:303–310 [View Article]
    [Google Scholar]
  38. Kämpfer P. Evaluation of the Titertek-Enterobac-Automated System (TTE-AS) for identification of members of the family Enterobacteriaceae. Zentralblatt für Bakteriologie 1990; 273:164–172 [View Article]
    [Google Scholar]
  39. Kämpfer P, Steiof M, Dott W. Microbiological characterisation of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 1991; 21:227–251 [View Article] [PubMed]
    [Google Scholar]
  40. Schumann P. Peptidoglycan Structure. Methods Microbiol 2011; 38:101–129
    [Google Scholar]
  41. Tindall BJ. Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 1990; 66:199–202 [View Article]
    [Google Scholar]
  42. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990; 13:128–130 [View Article]
    [Google Scholar]
  43. Altenburger P, Kämpfer P, Makristathis A, Lubitz W, Busse H-J. Classification of bacteria isolated from a medieval wall painting. J Biotechnol 1996; 47:39–52 [View Article]
    [Google Scholar]
  44. Stolz A, Busse H-J, Kämpfer P. Pseudomonas knackmussii sp. nov. Int J Syst Evol Microbiol 2007; 57:572–576 [View Article] [PubMed]
    [Google Scholar]
  45. Cho H, Heo J, Ahn JH, Weon HY, Kim JS et al. Paenibacillus solanacearum sp. nov., isolated from rhizosphere soil of a tomato plant. Int J Syst Evol Microbiol 2017; 67:5046–5050 [View Article] [PubMed]
    [Google Scholar]
  46. Kämpfer P, Busse H-J, Tindall BJ, Nimtz M, Grün-Wollny I. Nonomuraea rosea sp. nov. Int J Syst Evol Microbiol 2010; 60:1118–1124 [View Article] [PubMed]
    [Google Scholar]
  47. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996; 42:989–1005 [View Article]
    [Google Scholar]
  48. Logan NA, Berge O, Bishop AH, Busse H-J, De Vos P et al. Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 2009; 59:2114–2121 [View Article] [PubMed]
    [Google Scholar]
  49. Kuroshima K-I, Sakane T, Takata R, Yokota A. Bacillus ehimensis sp. nov. and Bacillus chitinolyticus sp. nov., new chitinolytic members of the genus Bacillus . Int J Syst Bacteriol 1996; 46:76–80 [View Article]
    [Google Scholar]
  50. Kim DS, Bae CY, Jeon JJ, Chun SJ, Oh HW. Paenibacillus elgii sp. nov., with broad antimicrobial activity. Int J Syst Evol Microbiol 2004; 54:2031–2035 [View Article] [PubMed]
    [Google Scholar]
  51. Chung YR, Kim CH, Hwang I, Chun J. Paenibacillus koreensis sp. nov., a new species that produces an iturin-like antifungal compound. Int J Syst Evol Microbiol 2000; 50:1495–1500 [View Article] [PubMed]
    [Google Scholar]
  52. Hu X-F, Li S-X, Wu J-G, Wang J-F, Fang Q-L et al. Transfer of Bacillus mucilaginosus and Bacillus edaphicus to the genus Paenibacillus as Paenibacillus mucilaginosus comb. nov. and Paenibacillus edaphicus comb. nov. Int J Syst Evol Microbiol 2010; 60:8–14 [View Article] [PubMed]
    [Google Scholar]
  53. Wu X, Fang H, Qian C, Wen Y, Shen X et al. Paenibacillus tianmuensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 2011; 61:1133–1137 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005051
Loading
/content/journal/ijsem/10.1099/ijsem.0.005051
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error