1887

Abstract

A Gram-stain-negative bacterium, designated strain Marseille-Q3039, was isolated from subgingival dental plaque of a woman with gingivitis in Marseille, France. Strain Marseille-Q3039 was found to be an anaerobic, motile and spore-forming crescent-shaped bacterium that grew at 25–41.5 °C (optimum, 37 °C), pH 5.5–8.5 (optimum, pH 7.5) and salinity of 5.0 g l NaCl. The results of 16S rRNA gene sequence analysis revealed that strain Marseille-Q3039 was closely related to ATCC 43532 (98.42 % similarity), ATCC 43527 (97.25 %) and DSM 2778 (97.19 %). The orthologous average nucleotide identity and digital DNA–DNA hybridization relatedness between strain Q3039 and its closest phylogenetic neighbours were respectively 84.57 and 28.2 % for ATCC 43532 and 83.93 and 27.2 % for DSM 2778. The major fatty acids were identified as C (27.7 %), C (24.4 %) and specific C 3-OH (12.3 %). Genome sequencing revealed a genome size of 2 351 779 bp and a G+C content of 57.2 mol%. On the basis of the results from phenotypic, chemotaxonomic, genomic and phylogenetic analyses and data, we concluded that strain Marseille-Q3039 represents a novel species of the genus , for which the name sp. nov. is proposed (=CSUR Q3039=CECT 30128).

Funding
This study was supported by the:
  • Agence Nationale de la Recherche (Award Méditerranée Infection 10-IAHU-03)
    • Principle Award Recipient: NotApplicable
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005040
2021-10-06
2021-10-17
Loading full text...

Full text loading...

References

  1. Chapple ILC, Mealey BL, Van Dyke TE, Bartold PM, Dommisch H et al. Periodontal health and gingival diseases and conditions on an intact and a reduced periodontium: Consensus report of workgroup 1 of the 2017 world workshop on the classification of periodontal and peri-implant diseases and conditions. J Periodontol 2018; 89 Suppl 1:S74–S84 [View Article]
    [Google Scholar]
  2. Diaz PI, Hoare A, Hong B-Y. Subgingival microbiome shifts and community dynamics in periodontal diseases. J Calif Dent Assoc 2016; 44:421–435 [PubMed]
    [Google Scholar]
  3. Huang S, Li R, Zeng X, He T, Zhao H et al. Predictive modeling of gingivitis severity and susceptibility via oral microbiota. ISME J 2014; 8:1768–1780 [View Article] [PubMed]
    [Google Scholar]
  4. Kistler JO, Booth V, Bradshaw DJ, Wade WG. Bacterial community development in experimental gingivitis. PLoS One 2013; 8:e71227 [View Article] [PubMed]
    [Google Scholar]
  5. von Prowazek S. Zur Parasitologie von Westafrika. Zentralblatt fur Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene 191332–36
    [Google Scholar]
  6. List of Prokaryotic names with Standing in Nomenclature Genus Selenomonas. https://lpsn.dsmz.de/genus/selenomonas accessed 24 Jul 2021
  7. Kumada H, Watanabe K, Nakamu A, Haishima Y, Kondo S et al. Chemical and biological properties of lipopolysaccharide from Selenomonas sputigena ATCC 33150. Oral Microbiol Immunol 1997; 12:162–167 [View Article] [PubMed]
    [Google Scholar]
  8. Seng P, Drancourt M, Gouriet F, La Scola B, Fournier P-E et al. Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Infect Dis 2009; 49:543–551 [View Article] [PubMed]
    [Google Scholar]
  9. Dighe AS, Shouche YS, Ranade DR. Selenomonas lipolytica sp. nov., an obligately anaerobic bacterium possessing lipolytic activity. Int J Syst Bacteriol 1998; 48 Pt 3:783–791 [View Article] [PubMed]
    [Google Scholar]
  10. Lai C-H, Males BM, Dougherty PA, Berthold P, Listgarten MA et al. Centipeda periodontii gen. nov., sp. nov. From human periodontal lesions. Int J Syst Bacteriol 1983; 33:628–635 [View Article]
    [Google Scholar]
  11. Zhang K, Dong X. Selenomonas bovis sp. nov., isolated from yak rumen contents. Int J Syst Evol Microbiol 2009; 59:2080–2083 [View Article] [PubMed]
    [Google Scholar]
  12. Moore LVH, Johnson JL, Moore WEC. Selenomonas noxia sp. nov., Selenomonas flueggei sp. nov., Selenomonas infelix sp. nov., Selenomonas dianae sp. nov., and Selenomonas artemidis sp. nov., from the human gingival crevice. Int J Syst Bacteriol 1987; 37:271–280 [View Article]
    [Google Scholar]
  13. Sasser M. Bacterial Identification by Gas Chromatographic Analysis of Fatty Acid Methyl Esters (GC-FAME) Microbial ID: Newark, NJ, USA: 2006
    [Google Scholar]
  14. Dione N, Sankar SA, Lagier J-C, Khelaifia S, Michele C et al. Genome sequence and description of Anaerosalibacter massiliensis sp. nov. New Microbes New Infect 2016; 10:66–76 [View Article] [PubMed]
    [Google Scholar]
  15. Jantzen E, Hofstad T. Fatty acid composition of oral isolates of selenomonas. J Gen Microbiology 1985; 131:175–179 [View Article]
    [Google Scholar]
  16. Lo CI, Sankar SA, Fall B, Sambe-Ba B, Diawara S et al. High-quality draft genome sequence and description of Haemophilus massiliensis sp. nov. Stand Genomic Sci 2016; 11:31 [View Article] [PubMed]
    [Google Scholar]
  17. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  18. Luo R, Liu B, Xie Y, Li Z, Huang W et al. SOAPdenovo2: An empirically improved memory-efficient short-read de novo assembler. Gigascience 2012; 1:18 [View Article] [PubMed]
    [Google Scholar]
  19. Bolger AM, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30:2114–2120 [View Article] [PubMed]
    [Google Scholar]
  20. Grant JR, Stothard P. The CGView server: a comparative genomics tool for circular genomes. Nucleic Acids Res 2008; 36:W181–4 [View Article]
    [Google Scholar]
  21. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  22. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  23. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  24. Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16s rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article] [PubMed]
    [Google Scholar]
  25. Adékambi T, Shinnick TM, Raoult D, Drancourt M. Complete rpoB gene sequencing as a suitable supplement to DNA-DNA hybridization for bacterial species and genus delineation. Int J Syst Evol Microbiol 2008; 58:1807–1814 [View Article] [PubMed]
    [Google Scholar]
  26. Lee I, Ouk Kim Y, Park S-C, Chun J. Orthoani: An improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article] [PubMed]
    [Google Scholar]
  27. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S et al. Roary: Rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015; 31:3691–3693 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005040
Loading
/content/journal/ijsem/10.1099/ijsem.0.005040
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error