1887

Abstract

A Gram-negative bacterium, designated strain Marseille-Q3452, was isolated from subgingival dental plaque of a subject suffering from dental plaque biofilm-induced gingivitis on an intact periodontium in Marseille, France. The strain was characterized by 16S rRNA and gene sequence analysis and by conventional phenotypic and chemotaxonomic testing. The average nucleotide identity (ANI) and core genome phylogeny were determined using whole-genome sequences. Although strain Marseille-Q3452 showed 99.72 % 16S rRNA gene sequence similarity with strain ATCC 51146, and ANI analyses revealed divergence between the two strains. The two species could also be distinguished phenotypically on the basis of the absence of flagella and nitrate reduction. On the basis of the results from phenotypic, chemotaxonomic, genomic and phylogenetic analyses and data, we concluded that strain Marseille-Q3452 represents a novel species of the genus , for which the name sp. nov. is proposed (=CSUR Q3452=CECT 30263).

Funding
This study was supported by the:
  • agence nationale de la recherche (Award reference: Méditerranée Infection 10-IAHU-03)
    • Principle Award Recipient: NotApplicable
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005039
2021-10-20
2024-04-29
Loading full text...

Full text loading...

References

  1. Bacterio.net List of prokariotic names with standing in nomenclature (LPSN). https://www.bacterio.net/genus/campylobacter, https://www.bacterio.net/genus/campylobacter
  2. Plishka M, Sargeant JM, Greer AL, Hookey S, Winder C. The prevalence of Campylobacter in live cattle, Turkey, chicken, and swine in the United States and Canada: A systematic review and meta-analysis. Foodborne Pathog Dis 2021; 18:230–242 [View Article] [PubMed]
    [Google Scholar]
  3. Facciolà A, Riso R, Avventuroso E, Visalli G, Delia SA et al. Campylobacter: From microbiology to prevention. J Prev Med Hyg 2017; 58:E92–E79
    [Google Scholar]
  4. Kreling V, Falcone FH, Kehrenberg C, Hensel A. Campylobacter sp.: Pathogenicity factors and prevention methods-new molecular targets for innovative antivirulence drugs?. Appl Microbiol Biotechnol 2020; 104:10409–10436 [View Article] [PubMed]
    [Google Scholar]
  5. Chen J, Liu F, Lee SA, Chen S, Zhou X et al. Detection of il-18 and il-1β protein and mrna in human oral epithelial cells induced by campylobacter concisus strains. Biochem Biophys Res Commun 2019; 518:44–49 [View Article] [PubMed]
    [Google Scholar]
  6. Macuch PJ, Tanner AC. Campylobacter species in health, gingivitis, and periodontitis. J Dent Res 2000; 79:785–792 [View Article] [PubMed]
    [Google Scholar]
  7. Henne K, Fuchs F, Kruth S, Horz HP, Conrads G. Shifts in campylobacter species abundance may reflect general microbial community shifts in periodontitis progression. J Oral Microbiol 2014; 6:25874 [View Article] [PubMed]
    [Google Scholar]
  8. Chapple ILC, Mealey BL, Van Dyke TE, Bartold PM, Dommisch H et al. Periodontal health and gingival diseases and conditions on an intact and a reduced periodontium: Consensus report of workgroup 1 of the 2017 world workshop on the classification of periodontal and peri-implant diseases and conditions. J Periodontol 2018; 89 Suppl 1:S74–S84 [View Article]
    [Google Scholar]
  9. Vartoukian SR, Adamowska A, Lawlor M, Moazzez R, Dewhirst FE et al. In vitro cultivation of “Unculturable” oral bacteria, facilitated by community culture and media supplementation with siderophores. PLoS One 2016; 11:e0146926 [View Article] [PubMed]
    [Google Scholar]
  10. Seng P, Drancourt M, Gouriet F, La Scola B, Fournier P-E et al. Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Infect Dis 2009; 49:543–551 [View Article] [PubMed]
    [Google Scholar]
  11. Seng P, Abat C, Rolain JM, Colson P, Lagier J-C et al. Identification of rare pathogenic bacteria in a clinical microbiology laboratory: Impact of matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 2013; 51:2182–2194 [View Article] [PubMed]
    [Google Scholar]
  12. Moran AP, Upton ME. Effect of medium supplements, illumination and superoxide dismutase on the production of coccoid forms of Campylobacter jejuni ATCC 29428. J Appl Bacteriol 1987; 62:43–51 [View Article] [PubMed]
    [Google Scholar]
  13. Tittsler RP, Sandholzer LA. The use of semi-solid agar for the detection of bacterial motility1. J Bacteriol 1936; 31:575–580 [View Article] [PubMed]
    [Google Scholar]
  14. Vandamme P, Daneshvar MI, Dewhirst FE, Paster BJ, Kersters K et al. chemotaxonomic analyses of Bacteroides gracilis and Bacteroides ureolyticus and reclassification of B. gracilis as Campylobacter gracilis comb. nov. Int J Syst Bacteriol 1995; 45:145–152 [View Article] [PubMed]
    [Google Scholar]
  15. Silva MF, Pereira G, Carneiro C, Hemphill A, Mateus L et al. Campylobacter portucalensis sp. nov., a new species of Campylobacter isolated from the preputial mucosa of bulls. PLoS One 2020; 15:e0227500 [View Article] [PubMed]
    [Google Scholar]
  16. Lawson AJ, On SL, Logan JM, Stanley J. Campylobacter hominis sp. nov., from the human gastrointestinal tract. Int J Syst Evol Microbiol 2001; 51:651–660 [View Article] [PubMed]
    [Google Scholar]
  17. Vandamme P, Falsen E, Rossau R, Hoste B, Segers P et al. Revision of Campylobacter, Helicobacter, and Wolinella taxonomy: emendation of generic descriptions and proposal of Arcobacter gen. nov. Int J Syst Bacteriol 1991; 41:88–103 [View Article]
    [Google Scholar]
  18. Etoh Y, Dewhirst FE, Paster BJ, Yamamoto A, Goto N. Campylobacter showae sp. nov., Isolated from the Human Oral Cavity. Int J Syst Bacteriol 1993; 43:631–639 [View Article] [PubMed]
    [Google Scholar]
  19. Sasser M. Bacterial Identification by Gas Chromatographic Analysis of Fatty Acid Methyl Esters (GC-FAME) Microbial ID: Newark, NJ, USA: 2006
    [Google Scholar]
  20. Dione N, Sankar SA, Lagier JC, Khelaifia S, Michele C et al. Genome sequence and description of Anaerosalibacter massiliensis sp. nov. New Microbes New Infect 2016; 10:66–76 [View Article] [PubMed]
    [Google Scholar]
  21. Lo CI, Sankar SA, Fall B, Sambe-Ba B, Diawara S et al. High-quality draft genome sequence and description of Haemophilus massiliensis sp. nov. Stand Genomic Sci 2016; 11:31 [View Article] [PubMed]
    [Google Scholar]
  22. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. Spades: A new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  23. Luo R, Liu B, Xie Y, Li Z, Huang W et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 2012; 1:18 [View Article] [PubMed]
    [Google Scholar]
  24. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  25. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  26. Miller WG, Yee E, Jolley KA, Chapman MH. Use of an improved atpA amplification and sequencing method to identify members of the Campylobacteraceae and Helicobacteraceae . Lett Appl Microbiol 2014; 58:582–590 [View Article] [PubMed]
    [Google Scholar]
  27. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  28. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015; 31:3691–3693 [View Article] [PubMed]
    [Google Scholar]
  29. Price MN, Dehal PS, Arkin AP. FastTree 2 – Approximately Maximum-Likelihood Trees for Large Alignments. PLoS One 2010; 5:e9490 [View Article] [PubMed]
    [Google Scholar]
  30. Konstantinidis KT, Tiedje JM. Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci U S A 2005; 102:2567–2572 [View Article] [PubMed]
    [Google Scholar]
  31. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Inter J Syst Evol Microbiol 2007; 57:81–91 [View Article]
    [Google Scholar]
  32. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J et al. BLAST+: architecture and applications. BMC Bioinformatics 2009; 10:421 [View Article] [PubMed]
    [Google Scholar]
  33. Davis II EW, Weisberg AJ, Tabima JF, Grunwald NJ, Chang JH. Gall-ID: tools for genotyping gall-causing phytopathogenic bacteria. PeerJ 2016; 4:e2222 [View Article] [PubMed]
    [Google Scholar]
  34. Gilbert MJ, Miller WG, Leger JS, Chapman MH, Timmerman AJ et al. Campylobacter pinnipediorum sp. nov., isolated from pinnipeds, comprising Campylobacter pinnipediorum subsp. pinnipediorum subsp. nov. and Campylobacter pinnipediorum subsp. caledonicus subsp. nov. Int J Syst Evol Microbiol 2017; 67:1961–1968 [View Article] [PubMed]
    [Google Scholar]
  35. Bloomfield S, Wilkinson D, Rogers L, Biggs P, French N et al. Campylobacter novaezeelandiae sp. nov., isolated from birds and water in New Zealand. Int J Syst Evol Microbiol 2020; 70:3775–3784 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005039
Loading
/content/journal/ijsem/10.1099/ijsem.0.005039
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error