1887

Abstract

A Gram-stain-negative, aerobic, short-rod-shaped bacterium, designated strain CBS1P-1, was isolated from a surface-sterilized bark of . Growth of strain CBS1P-1 was observed with between 0 and 12.0 % (w/v) NaCl (optimally with 5.0 %) and at between pH 6.0–9.0. It grew at temperatures between 25–37 °C (optimum, 30 °C). Chemotaxonomic analysis showed that ubiquinone-10 was the respiratory quinone. The lipids comprised diphosphatidylglycerol, phosphatidylglycerol, an unidentified glycolipid, an unidentified phospholipid and an unidentified aminolipid. The major fatty acids of strain CBS1P-1 were C 7, C and C cyclo 8. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain CBS1P-1 was most related to CGMCC 1.12662 with a sequence similarity of 96.5 %. The average nucleotide identity and digital DNA–DNA hybridization values between strain CBS1P-1 and 1.12662 were 77.5 and 21.1 %, respectively. The G+C content of the genomic DNA was 67.3 mol%. Based on phylogenetic, chemotaxonomic and phenotypic data, strain CBS1P-1 is considered to represent a novel species of the genus , for which the name is proposed. The type strain is CBS1P-1 (=KCTC 62836=CGMCC 1.13743).

Funding
This study was supported by the:
  • Guizhou Provincial Science and Technology Foundation (Award Qian Ke He Jichu [2019]1347)
    • Principle Award Recipient: LiTuo
  • the National Natural Sciences Foundation of China (Award 81960642)
    • Principle Award Recipient: LiTuo
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005036
2021-10-01
2024-04-29
Loading full text...

Full text loading...

References

  1. Lai Q, Li G, Liu X, Du Y, Sun F et al. Pseudooceanicola atlanticus gen. nov. sp. nov., isolated from surface seawater of the Atlantic Ocean and reclassification of Oceanicola batsensis, Oceanicola marinus, Oceanicola nitratireducens, Oceanicola nanhaiensis, Oceanicola antarcticus and Oceanicola flagellatus, as Pseudooceanicola batsensis comb. nov., Pseudooceanicola marinus comb. nov., Pseudooceanicola nitratireducens comb. nov., Pseudooceanicola nanhaiensis comb. nov., Pseudooceanicola antarcticus comb. nov., and Pseudooceanicola flagellatus comb. nov. Antonie van Leeuwenhoek 2015; 107:1065–1074 [View Article] [PubMed]
    [Google Scholar]
  2. Huo YY, Li ZY, You H, Wang CS, Post AF et al. Oceanicola antarcticus sp. nov. and Oceanicola flagellatus sp. nov., moderately halophilic bacteria isolated from seawater. Int J Syst Evol Microbiol 2014; 64:2975–2979 [View Article] [PubMed]
    [Google Scholar]
  3. Lin KY, Sheu SY, Chang PS, Cho JC, Chen WM. Oceanicola marinus sp. nov., a marine alphaproteobacterium isolated from seawater collected off Taiwan. Int J Syst Evol Microbiol 2007; 57:1625–1629 [View Article] [PubMed]
    [Google Scholar]
  4. Cho JC, Giovannoni SJ. Oceanicola granulosus gen. nov., sp. nov. and Oceanicola batsensis sp. nov., poly-beta-hydroxybutyrate-producing marine bacteria in the order “Rhodobacterales.”. Int J Syst Evol Microbiol 2004; 54:1129–1136 [View Article] [PubMed]
    [Google Scholar]
  5. Gu J, Guo B, Wang YN, Yu SL, Inamori R et al. Oceanicola nanhaiensis sp. nov., isolated from sediments of the South China Sea. Int J Syst Evol Microbiol 2007; 57:157–160 [View Article] [PubMed]
    [Google Scholar]
  6. Zheng Q, Chen C, Wang YN, Jiao N. Oceanicola nitratireducens sp. nov., a marine alphaproteobacterium isolated from the South China Sea. Int J Syst Evol Microbiol 2010; 60:1655–1659 [View Article] [PubMed]
    [Google Scholar]
  7. Li Y, Wang Y, Wang Y, Lin F, Zhu H et al. Pseudooceanicola aestuarii sp. nov., isolated from the Jiulong River Estuary in PR China. Int J Syst Evol Microbiol 2020; 70:6220–6225 [View Article] [PubMed]
    [Google Scholar]
  8. Wolter LA, Wietz M, Ziesche L, Breider S, Leinberger J et al. Pseudooceanicola algae sp. nov., isolated from the marine macroalga Fucus spiralis, shows genomic and physiological adaptations for an algae-associated lifestyle. Syst Appl Microbiol 2021; 44:126166 [View Article] [PubMed]
    [Google Scholar]
  9. Yin Q, Song ZM, Liang J, Wang Y, Zheng X et al. Pseudooceanicola onchidii sp. nov., isolated from a marine invertebrate from the South China Sea. Int J Syst Evol Microbiol 2020; 70:1224–1230 [View Article] [PubMed]
    [Google Scholar]
  10. Lyu L, Lai Q, Li J, Shao Z, Yu Z. Pseudooceanicola pacificus sp. nov., isolated from deep-sea sediment of the Pacific Ocean. Int J Syst Evol Microbiol 2020; 70:4372–4377 [View Article] [PubMed]
    [Google Scholar]
  11. Huang MM, Guo LL, Wu YH, Lai QL, Shao ZZ et al. Pseudooceanicola lipolyticus sp. nov., a marine alphaproteobacterium, reclassification of Oceanicola flagellatus as Pseudooceanicola flagellatus comb. nov. and emended description of the genus Pseudooceanicola. Int J Syst Evol Microbiol 2018; 68:409–415 [View Article] [PubMed]
    [Google Scholar]
  12. Qin S, Wang HB, Chen HH, Zhang YQ, Jiang CL et al. Glycomyces endophyticus sp. nov., an endophytic actinomycete isolated from the root of Carex baccans Nees. Int J Syst Evol Microbiol 2008; 58:2525–2528 [View Article] [PubMed]
    [Google Scholar]
  13. Li WJ, Xu P, Schumann P, Zhang YQ, Pukall R et al. Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China) and emended description of the genus Georgenia. Int J Syst Evol Microbiol 2007; 57:1424–1428 [View Article] [PubMed]
    [Google Scholar]
  14. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article] [PubMed]
    [Google Scholar]
  15. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequence. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  16. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  17. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  18. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  19. Tamura S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  20. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  21. Marmur J. A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 1961; 3:208–218 [View Article]
    [Google Scholar]
  22. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI Prokaryotic Genome Annotation Pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article] [PubMed]
    [Google Scholar]
  23. Xu L, Dong Z, Fang L, Luo Y, Wei Z et al. OrthoVenn2: a web server for whole-genome comparison andannotation of orthologous clusters across multiple species. Nucleic Acids Res 2019; 47:W52–W58 [View Article] [PubMed]
    [Google Scholar]
  24. Alanjary M, Steinke K, Ziemert N. AutoMLST: an automated webserver for generating multi-locus species trees highlighting natural product potential. Nucleic Acids Res 2019; 47:276–282
    [Google Scholar]
  25. Avram O, Rapoport D, Portugez S, Pupko T. M1CR0B1AL1Z3R-a user-friendly web server for the analysis of large-scale microbial genomics data. Nucleic Acids Res 2019; 47:W88–W92 [View Article] [PubMed]
    [Google Scholar]
  26. Richter M, Rossellómóra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  27. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37:463–464
    [Google Scholar]
  28. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16:313–340 [View Article]
    [Google Scholar]
  29. Kelly KL. Inter-Society Color Council-National Bureau of Standards Color name Charts illustrated with Centroid Colors Washington, DC: US Government Printing Office; 1964
    [Google Scholar]
  30. Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family Oxalobacteraceae isolated from China. Int J Syst Evol Microbiol 2005; 55:1149–1153 [View Article] [PubMed]
    [Google Scholar]
  31. Cappuccino JG, Sherman N. Microbiology: a Laboratory Manual, 6th edn. San Francisco: Benjamin Cummings Pearson Education; 2002
    [Google Scholar]
  32. Gonzalez C, Gutierrez C, Ramirez C. Halobacterium vallismortis sp. nov., an amylolytic and carbohydrate-metabo-lizing, extremely halophilic bacterium. Can J Microbiol 1978; 24:710–715 [View Article] [PubMed]
    [Google Scholar]
  33. Komagata K, Suzuki KI. Lipid and cell wall analysis in bacterial systematics. Methods Microbiol 1987; 19:161–207
    [Google Scholar]
  34. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  35. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article] [PubMed]
    [Google Scholar]
  36. Guo L, Tuo L, Habden X, Zhang YQ, Liu JM et al. Allosalinactinospora lopnorensis gen. nov., sp. nov., a new member of the family Nocardiopsaceae isolated from soil. Int J Syst Evol Microbiol 2015; 65:206–213 [View Article] [PubMed]
    [Google Scholar]
  37. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  38. Lin K-Y, Sheu S-Y, Chang P-S, Cho J-C, Chen W-M. Oceanicola marinus sp. nov., a marine alphaproteobacterium isolated from seawater collected off Taiwan. Int J Syst Evol Microbiol 2007; 57:1625–1629 [View Article] [PubMed]
    [Google Scholar]
  39. Park S, Lee MH, Yoon JH. Oceanicola litoreus sp. nov., an alphaproteobacterium isolated from the seashore sediment. Antonie Van Leeuwenhoek 2013; 103:859–866 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005036
Loading
/content/journal/ijsem/10.1099/ijsem.0.005036
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error