1887

Abstract

A novel Gram-stain-negative, facultatively anaerobic, rod-shaped bacterium, designated as D167-6-1, was isolated from deep-sea sediment collected from the Pacific Ocean. The cells were catalase- and oxidase-positive, and motile by means of peritrichous flagella. Growth occurred at NaCl concentrations ranging from 0 to 19 % (optimum, 2–8 %, w/v), from pH 6 to 11 (optimum, 7–8) and at temperatures between 4 and 45 °C (optimum, 33 °C). Phylogenetic analysis based on 16S rRNA, and gene sequences and its genome sequence revealed that strain D167-6-1 formed a monophyletic branch within the genus and was most closely related to , , , , and (with 98.5, 98.5, 98.4, 98.1, 97.5 and 97.8 % 16S rRNA sequence similarity, respectively). The complete genome size of strain D167-6-1 was 4.49 Mb, with a DNA G+C content of 62.8 mol%. The estimated averagenucleotide identity and DNA–DNA hybridization values between strain D167-6-1 and other closely related species were 77.59–85.35 % and 22.0–30.6 %, respectively. The principal cellular fatty acids (>5 %) were C 7, C, C cyclo 8, summed feature 3 (C 7/C 6) and C cyclo. The polar lipids were identified as diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, an unidentified aminolipid, aminophospholipid and two unidentified phospholipids. The predominant respiratory quinones were Q-9 and Q-8. The combined genotypic and phenotypic data show that strain D167-6-1 represents a novel species of the genus , for which the name sp. nov. is proposed, with the type strain D167-6-1 (=MCCC 1A13316=KCTC 72441).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004790
2021-04-27
2021-05-14
Loading full text...

Full text loading...

References

  1. Vreeland RH, Litchfield CD, Martin EL, Elliot E. Halomonas elongata, a new genus and species of extremely salt-tolerant bacteria. Int J Syst Evol Microbiol 1980; 30:485–495
    [Google Scholar]
  2. Arahal DR, Vreeland RH, Litchfield CD, Mormile MR, Tindall BJ et al. Recommended minimal standards for describing new taxa of the family Halomonadaceae . Int J Syst Evol Microbiol 2007; 57:2436–2446 [CrossRef][PubMed]
    [Google Scholar]
  3. Kim KK, Lee J-S, Stevens DA. Microbiology and epidemiology of Halomonas species. Future Microbiol 2013; 8:1559–1573 [CrossRef][PubMed]
    [Google Scholar]
  4. Amjres H, Béjar V, Quesada E, Abrini J, Llamas I. Halomonas rifensis sp. nov., an exopolysaccharide-producing, halophilic bacterium isolated from a solar saltern. Int J Syst Evol Microbiol 2011; 61:2600–2605 [CrossRef][PubMed]
    [Google Scholar]
  5. Cánovas D, Vargas C, Kneip S, Morón MA-J, Ventosa A et al. Genes for the synthesis of the osmoprotectant glycine betaine from choline in the moderately halophilic bacterium Halomonas elongata DSM 3043, USA. Microbiology 2000; 146 (Pt 2:455–463 [CrossRef][PubMed]
    [Google Scholar]
  6. Schwibbert K, Marin-Sanguino A, Bagyan I, Heidrich G, Lentzen G et al. A blueprint of ectoine metabolism from the genome of the industrial producer Halomonas elongata DSM 2581 T. Environ Microbiol 2011; 13:1973–1994 [CrossRef][PubMed]
    [Google Scholar]
  7. Kawata Y, Ando H, Matsushita I, Tsubota J. Efficient secretion of (R)-3-hydroxybutyric acid from Halomonas sp. KM-1 by nitrate fed-batch cultivation with glucose under microaerobic conditions. Bioresour Technol 2014; 156:400–403 [CrossRef][PubMed]
    [Google Scholar]
  8. García MT, Mellado E, Ostos JC, Ventosa A. Halomonas organivorans sp. nov., a moderate halophile able to degrade aromatic compounds. Int J Syst Evol Microbiol 2004; 54:1723–1728 [CrossRef][PubMed]
    [Google Scholar]
  9. Hajizadeh N, Sefidi Heris Y, Zununi Vahed S, Vallipour J, Hejazi MA et al. Biodegradation of para amino acetanilide by Halomonas sp. TBZ3. Jundishapur J Microbiol 2015; 8:e18622 [CrossRef][PubMed]
    [Google Scholar]
  10. Homann VV, Sandy M, Tincu JA, Templeton AS, Tebo BM et al. Loihichelins A-F, a suite of amphiphilic siderophores produced by the marine bacterium Halomonas LOB-5. J Nat Prod 2009; 72:884–888 [CrossRef][PubMed]
    [Google Scholar]
  11. Dong Y, Kumar CG, Chia N, Kim P-J, Miller PA et al. Halomonas sulfidaeris-dominated microbial community inhabits a 1.8 km-deep subsurface Cambrian Sandstone reservoir. Environ Microbiol 2014; 16:1695–1708 [CrossRef][PubMed]
    [Google Scholar]
  12. González-Domenech CM, Martínez-Checa F, Béjar V, Quesada E. Denitrification as an important taxonomic marker within the genus Halomonas . Syst Appl Microbiol 2010; 33:85–93 [CrossRef][PubMed]
    [Google Scholar]
  13. Guo Y, Zhou X, Li Y, Li K, Wang C et al. Heterotrophic nitrification and aerobic denitrification by a novel Halomonas campisalis . Biotechnol Lett 2013; 35:2045–2049 [CrossRef][PubMed]
    [Google Scholar]
  14. Xiao-Ran J, Jin Y, Xiangbin C, Guo-Qiang C, Jiang XR. Halomonas and pathway engineering for bioplastics production. Methods Enzymol 2018; 608:309–328 [CrossRef][PubMed]
    [Google Scholar]
  15. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  16. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013; 30:772–780 [CrossRef][PubMed]
    [Google Scholar]
  17. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  18. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  19. Rzhetsky A, Nei M. Statistical properties of the ordinary least-squares, generalized least-squares, and minimum-evolution methods of phylogenetic inference. J Mol Evol 1992; 35:367–375 [CrossRef][PubMed]
    [Google Scholar]
  20. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [CrossRef][PubMed]
    [Google Scholar]
  21. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [CrossRef][PubMed]
    [Google Scholar]
  22. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  23. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37:463–464 [CrossRef]
    [Google Scholar]
  24. Segata N, Börnigen D, Morgan XC, Huttenhower C, Nicola S. PhyloPhlAn is a new method for improved phylogenetic and taxonomic placement of microbes. Nat Commun 2013; 4:2304 [CrossRef][PubMed]
    [Google Scholar]
  25. Skerman VBD. A Guide to the Identification of the Genera of Bacteria, 2nd ed. Baltimore: Williams & Wilkins; 1967
    [Google Scholar]
  26. Joo H-S, Hirai M, Shoda M. Characteristics of ammonium removal by heterotrophic nitrification-aerobic denitrification by Alcaligenes faecalis No. 4. J Biosci Bioeng 2005; 100:184–191 [CrossRef][PubMed]
    [Google Scholar]
  27. Mata JA, Martínez-Cánovas J, Quesada E, Béjar V. A detailed phenotypic characterisation of the type strains of Halomonas species. Syst Appl Microbiol 2002; 25:360–375 [CrossRef][PubMed]
    [Google Scholar]
  28. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  29. Kates M. Techniques of Lipidology. Sole Distributors for the USA and Canada New York, NY: Elsevier Science Pub. Co; 1986
    [Google Scholar]
  30. Collins MD. Isoprenoid quinone analyses in bacterial classification and identification. Society for Applied Bacteriology 1985267–287
    [Google Scholar]
  31. Wu G, Wu X-Q, Wang Y-N, Chi C-Q, Tang Y-Q et al. Halomonas daqingensis sp. nov., a moderately halophilic bacterium isolated from an oilfield soil. Int J Syst Evol Microbiol 2008; 58:2859–2865 [CrossRef][PubMed]
    [Google Scholar]
  32. Berendes F, Gottschalk G, Heine-Dobbernack E, Moore ERB, Tindall BJ. Halomonas desiderata sp. nov, a new alkaliphilic, halotolerant and denitrifying bacterium isolated from a municipal sewage works. Syst Appl Microbiol 1996; 19:158–167 [CrossRef]
    [Google Scholar]
  33. Boltianskaia IV, Kevbrin VV, Lysenko AM, Kolganova TV, Turova TP et al. [Halomonas mongoliensis sp. nov. and Halomonas kenyensis sp. nov., new haloalkaliphilic denitrifiers capable of reducing N2O, isolated from soda lakes]. Mikrobiologiia 2007; 76:834–843[PubMed]
    [Google Scholar]
  34. Ming H, Ji W-L, Li M, Zhao Z-L, Cheng L-J et al. Halomonas lactosivorans sp. nov., isolated from salt-lake sediment. Int J Syst Evol Microbiol 2020; 70:3504–3512 [CrossRef][PubMed]
    [Google Scholar]
  35. Gan L, Long X, Zhang H, Hou Y, Tian J et al. Halomonas saliphila sp. nov., a moderately halophilic bacterium isolated from a saline soil. Int J Syst Evol Microbiol 2018; 68:1153–1159 [CrossRef][PubMed]
    [Google Scholar]
  36. Li X, Gan L, Hu M, Wang S, Tian Y et al. Halomonas pellis sp. nov., a moderately halophilic bacterium isolated from wetsalted hides. Int J Syst Evol Microbiol 2020; 70:54175424 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004790
Loading
/content/journal/ijsem/10.1099/ijsem.0.004790
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error