1887
Preview this article:

There is no abstract available.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004784
2021-05-06
2024-05-13
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/71/5/ijsem004784.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004784&mimeType=html&fmt=ahah

References

  1. de Lajudie P, Young JPW. International Committee on Systematics of Prokaryotes Subcommittee on the Taxonomy of Rhizobia and Agrobacteria minutes of the closed meeting by videoconference, 17 July 2019. Int J Syst Evol Microbiol 2020; 70:3563–3571 [View Article][PubMed]
    [Google Scholar]
  2. Whitman WB, Bull CT, Busse H-J, Fournier P-E, Oren A et al. Request for revision of the statutes of the International Committee on Systematics of prokaryotes. Int J Syst Evol Microbiol 2019; 69:584–593 [View Article][PubMed]
    [Google Scholar]
  3. Weisberg AJ, Davis EW, Tabima J, Belcher MS, Miller M et al. Unexpected conservation and global transmission of agrobacterial virulence plasmids. Science 2020; 368:eaba5256 [View Article][PubMed]
    [Google Scholar]
  4. Cao J, Wei Y, Lai Q, Wu Y, Deng J et al. Georhizobium profundi gen. nov., sp. nov., a piezotolerant bacterium isolated from a deep-sea sediment sample of the New Britain Trench. Int J Syst Evol Microbiol 2020; 70:373–379 [View Article][PubMed]
    [Google Scholar]
  5. Lassalle F, Dastgheib SMM, Zhao F-J, Zhang J, Verbarg S et al. Phylogenomics reveals the basis of adaptation of Pseudorhizobium species to extreme environments and supports a taxonomic revision of the genus. Syst Appl Microbiol 2021; 44:126165 [View Article][PubMed]
    [Google Scholar]
  6. Kimes NE, López-Pérez M, Flores-Félix JD, Ramírez-Bahena M-H, Igual JM et al. Pseudorhizobium pelagicum gen. nov., sp. nov. isolated from a pelagic Mediterranean zone. Syst Appl Microbiol 2015; 38:293–299 [View Article][PubMed]
    [Google Scholar]
  7. Costechareyre D, Bertolla F, Nesme X. Homologous recombination in Agrobacterium: potential implications for the genomic species concept in bacteria. Mol Biol Evol 2009; 26:167–176 [View Article][PubMed]
    [Google Scholar]
  8. Shams M, Vial L, Chapulliot D, Nesme X, Lavire C. Rapid and accurate species and genomic species identification and exhaustive population diversity assessment of Agrobacterium spp. using recA-based PCR. Syst Appl Microbiol 2013; 36:351–358 [View Article][PubMed]
    [Google Scholar]
  9. Velázquez E, Flores-Félix JD, Sánchez-Juanes F, Igual JM, Peix Álvaro. Strain ATCC 4720T is the authentic type strain of Agrobacterium tumefaciens, which is not a later heterotypic synonym of Agrobacterium radiobacter . Int J Syst Evol Microbiol 2020; 70:5172–5176 [View Article][PubMed]
    [Google Scholar]
  10. Fagorzi C, Ilie A, Decorosi F, Cangioli L, Viti C. Symbiotic and non-symbiotic members of the genus Ensifer (syn. Sinorhizobium) are separated into two clades based on comparative genomics and high-throughput phenotyping. bioRxiv 2020
    [Google Scholar]
  11. Hördt A, López MG, Meier-Kolthoff JP, Schleuning M, Weinhold L-M et al. Analysis of 1,000+ type-strain genomes substantially improves taxonomic classification of Alphaproteobacteria . Front Microbiol 2020; 11:468 [View Article][PubMed]
    [Google Scholar]
  12. Young JM. The genus name Ensifer Casida 1982 takes priority over Sinorhizobium Chen et al. 1988, and Sinorhizobium morelense Wang et al. 2002 is a later synonym of Ensifer adhaerens Casida 1982. Is the combination "Sinorhizobium adhaerens" (Casida 1982) Willems et al. 2003 legitimate? Request for an Opinion. Int J Syst Evol Microbiol 2003; 53:2107–2110 [View Article][PubMed]
    [Google Scholar]
  13. Haryono M, Tsai Y-M, Lin C-T, Huang F-C, Ye Y-C et al. Presence of an Agrobacterium-type tumor-inducing plasmid in Neorhizobium sp. NCHU2750 and the link to phytopathogenicity. Genome Biol Evol 2018; 10:3188–3195 [View Article][PubMed]
    [Google Scholar]
  14. Ormeño-Orrillo E, Servín-Garcidueñas LE, Rogel MA, González V, Peralta H et al. Taxonomy of rhizobia and agrobacteria from the Rhizobiaceae family in light of genomics. Syst Appl Microbiol 2015; 38:287–291 [View Article][PubMed]
    [Google Scholar]
  15. González V, Santamaría RI, Bustos P, Pérez-Carrascal OM, Vinuesa P et al. Phylogenomic Rhizobium species are structured by a continuum of diversity and genomic clusters. Front Microbiol 2019; 10:910 [View Article][PubMed]
    [Google Scholar]
  16. Ramírez-Puebla ST, Hernández MAR, Guerrero Ruiz G, Ormeño-Orrillo E, Martinez-Romero JC et al. Nodule bacteria from the cultured legume Phaseolus dumosus (belonging to the Phaseolus vulgaris cross-inoculation group) with common tropici phenotypic characteristics and symbiovar but distinctive phylogenomic position and chromid. Syst Appl Microbiol 2019; 42:373–382 [View Article][PubMed]
    [Google Scholar]
  17. Jorrin B, Palacios JM, Peix Álvaro, Imperial J. Rhizobium ruizarguesonis sp. nov., isolated from nodules of Pisum sativum L. Syst Appl Microbiol 2020; 43:126090 [View Article][PubMed]
    [Google Scholar]
  18. Oren A, Garrity GM. Validation List no. 195. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2020; 70:4844–4847
    [Google Scholar]
  19. Young JPW, Moeskjær S, Afonin A, Rahi P, Maluk M. Defining the Rhizobium leguminosarum species complex. Preprints 2020. Genes 2021; 12:111. 1
    [Google Scholar]
  20. Flores-Félix JD, Menéndez E, Ramírez-Bahena MH, Peix A, García-Fraile P et al. Agrobacterium cavarae sp. nov., isolated from maize (Zea mays L.) roots. Int J Syst Evol Microbiol 2020; 70:5512–5519 [View Article][PubMed]
    [Google Scholar]
  21. Delamuta JRM, Scherer AJ, Ribeiro RA, Hungria M. Genetic diversity of Agrobacterium species isolated from nodules of common bean and soybean in Brazil, Mexico, Ecuador and Mozambique, and description of the new species Agrobacterium fabacearum sp. nov. Int J Syst Evol Microbiol 2020; 70:4233–4244 [View Article][PubMed]
    [Google Scholar]
  22. Lin S-Y, Hameed A, Huang H-I, Young C-C. Allorhizobium terrae sp. nov., isolated from paddy soil, and reclassification of Rhizobium oryziradicis (Zhao et al. 2017) as Allorhizobium oryziradicis comb. nov. Int J Syst Evol Microbiol 2020; 70:397–405 [View Article]
    [Google Scholar]
  23. Helene LCF, Klepa MS, O'Hara G, Hungria M. Bradyrhizobium archetypum sp. nov., Bradyrhizobium australiense sp. nov. and Bradyrhizobium murdochi sp. nov., isolated from nodules of legumes indigenous to Western Australia. Int J Syst Evol Microbiol 2020; 70:4623–4636 [View Article][PubMed]
    [Google Scholar]
  24. Cabral Michel D, Martins da Costa E, Azarias Guimarães A, Soares de Carvalho T, Santos de Castro Caputo P et al. Bradyrhizobium campsiandrae sp. nov., a nitrogen-fixing bacterial strain isolated from a native leguminous tree from the Amazon adapted to flooded conditions. Arch Microbiol 2021; 203:233–240 [View Article][PubMed]
    [Google Scholar]
  25. Wasai-Hara S, Minamisawa K, Cloutier S, Bromfield ESP. Strains of Bradyrhizobium cosmicum sp. nov., isolated from contrasting habitats in Japan and Canada possess photosynthesis gene clusters with the hallmark of genomic islands. Int J Syst Evol Microbiol 2020; 70:5063–5074 [View Article][PubMed]
    [Google Scholar]
  26. Rejili M, Off K, Brachmann A, Marín M. Bradyrhizobium hipponense sp. nov., isolated from Lupinus angustifolius growing in the northern region of Tunisia. Int J Syst Evol Microbiol 2020; 70:5539–5550 [View Article][PubMed]
    [Google Scholar]
  27. Arroyo-Herrera I, Maldonado-Hernández J, Rojas-Rojas F-U, Meza-Radilla G, Larios-Serrato V et al. Cupriavidus agavae sp. nov., a species isolated from Agave L. rhizosphere in northeast Mexico. Int J Syst Evol Microbiol 2020; 70:4165–4170 [View Article][PubMed]
    [Google Scholar]
  28. Quan X-T, Siddiqi MZ, Liu Q-Z, Lee S-M, Im W-T. Devosia ginsengisoli sp. nov., isolated from ginseng cultivation soil. Int J Syst Evol Microbiol 2020; 70:1489–1495 [View Article][PubMed]
    [Google Scholar]
  29. Lin D, Huang Y, Chen Y, Zhu S, Yang J et al. Devosia indica sp. nov., isolated from surface seawater in the Indian Ocean. Int J Syst Evol Microbiol 2020; 70:340–345 [View Article][PubMed]
    [Google Scholar]
  30. Liu Y, Du J, Zhang J, Lai Q, Shao Z et al. Devosia marina sp. nov., isolated from deep seawater of the South China Sea, and reclassification of Devosia subaequoris as a later heterotypic synonym of Devosia soli . Int J Syst Evol Microbiol 2020; 70:3062–3068 [View Article][PubMed]
    [Google Scholar]
  31. Yang X, Jiang Z, Zhang J, Zhou X, Zhang X et al. Mesorhizobium alexandrii sp. nov., isolated from phycosphere microbiota of PSTs-producing marine dinoflagellate Alexandrium minutum amtk4. Antonie van Leeuwenhoek 2020; 113:907–917 [View Article][PubMed]
    [Google Scholar]
  32. Gao J-L, Xue J, Sun Y-C, Xue H, Wang ET et al. Mesorhizobium rhizophilum sp. nov., a 1-aminocyclopropane-1-carboxylate deaminase producing bacterium isolated from rhizosphere of maize in Northeast China. Antonie van Leeuwenhoek 2020; 113:1179–1189 [View Article][PubMed]
    [Google Scholar]
  33. Jung Y-J, Kim H-J, Hur M. Mesorhizobium terrae sp. nov., a novel species isolated from soil in Jangsu, Korea. Antonie van Leeuwenhoek 2020; 113:1279–1287 [View Article][PubMed]
    [Google Scholar]
  34. Jia LJ, Zhang KS, Tang K, Meng JY, Zheng C et al. Methylobacterium crusticola sp. nov., isolated from biological soil crusts. Int J Syst Evol Microbiol 2020; 70:2089–2095 [View Article][PubMed]
    [Google Scholar]
  35. Kim J, Chhetri G, Kim I, Kim MK, Seo T. Methylobacterium durans sp. nov., a radiation-resistant bacterium isolated from gamma ray-irradiated soil. Antonie Van Leeuwenhoek 2020; 113:211–220 [View Article][PubMed]
    [Google Scholar]
  36. Feng G-D, Chen W, Zhang X-J, Zhang J, Wang S-N et al. Methylobacterium nonmethylotrophicum sp. nov., isolated from tungsten mine tailing. Int J Syst Evol Microbiol 2020; 70:2867–2872 [View Article][PubMed]
    [Google Scholar]
  37. Jiang L, An D, Wang X, Zhang K, Li G et al. Methylobacterium planium sp. nov., isolated from a lichen sample. Arch Microbiol 2020; 202:1709–1715 [View Article][PubMed]
    [Google Scholar]
  38. Pascual JA, Ros M, Martínez J, Carmona F, Bernabé A et al. Methylobacterium symbioticum sp. nov., a new species isolated from spores of Glomus iranicum var. tenuihypharum . Curr Microbiol 2020; 77:2031–2041 [View Article][PubMed]
    [Google Scholar]
  39. Kim J, Chhetri G, Kim I, Kim H, Kim MK et al. Methylobacterium terrae sp. nov., a radiation-resistant bacterium isolated from gamma ray-irradiated soil. J Microbiol 2019; 57:959–966 [View Article][PubMed]
    [Google Scholar]
  40. Kim J, Chhetri G, Kim I, Kim H, Kim MK et al. Erratum to: Methylobacterium terrae sp. nov., a radiation-resistant bacterium isolated from gamma ray-irradiated soil. J Microbiol 2020; 58:79 [View Article][PubMed]
    [Google Scholar]
  41. Kim J, Chhetri G, Kim I, Lee B, Jang W et al. Methylobacterium terricola sp. nov., a gamma radiation-resistant bacterium isolated from gamma ray-irradiated soil. Int J Syst Evol Microbiol 2020; 70:2449–2456 [View Article][PubMed]
    [Google Scholar]
  42. Liu Z-T, Xian W-D, Li M-M, Liu L, Ming Y-Z et al. Microvirga arsenatis sp. nov., an arsenate reduction bacterium isolated from Tibet hot spring sediments. Antonie van Leeuwenhoek 2020; 113:1147–1153 [View Article][PubMed]
    [Google Scholar]
  43. Wang F, Yang L, Deng J, Liu X, Lu Y et al. Microvirga calopogonii sp. nov., a novel alphaproteobacterium isolated from a root nodule of Calopogonium mucunoides in Southwest China. Antonie van Leeuwenhoek 2019; 112:1593–1602 [View Article][PubMed]
    [Google Scholar]
  44. Msaddak A, Rejili M, Durán D, Mars M, Palacios JM et al. Microvirga tunisiensis sp. nov., a root nodule symbiotic bacterium isolated from Lupinus micranthus and L. luteus grown in Northern Tunisia. Syst Appl Microbiol 2019; 42:126015 [View Article][PubMed]
    [Google Scholar]
  45. Choi G-M, Kim KM, Yun C-S, Lee SY, Kim SY et al. Ochrobactrum soli sp. nov., isolated from a Korean cattle farm. Curr Microbiol 2020; 77:1104–1110 [View Article][PubMed]
    [Google Scholar]
  46. Hu M, Li X, Li Z, Liu B, Yang Z et al. Ochrobactrum teleogrylli sp. nov., a pesticide-degrading bacterium isolated from the insect Teleogryllus occipitalis living in deserted cropland. Int J Syst Evol Microbiol 2020; 70:2217–2225 [View Article][PubMed]
    [Google Scholar]
  47. Brock DA, Noh S, Hubert ANM, Haselkorn TS, DiSalvo S et al. Endosymbiotic adaptations in three new bacterial species associated with Dictyostelium discoideum: Paraburkholderia agricolaris sp. nov., Paraburkholderia hayleyella sp. nov., and Paraburkholderia bonniea sp. nov. PeerJ 2020; 8:e9151 [View Article][PubMed]
    [Google Scholar]
  48. Paulitsch F, Dall'Agnol RF, Delamuta JRM, Ribeiro RA, da Silva Batista JS et al. Paraburkholderia atlantica sp. nov. and Paraburkholderia franconis sp. nov., two new nitrogen-fixing nodulating species isolated from Atlantic forest soils in Brazil. Arch Microbiol 2020; 202:1369–1380 [View Article][PubMed]
    [Google Scholar]
  49. Wilhelm RC, Cyle KT, Martinez CE, Karasz DC, Newman JD et al. Paraburkholderia solitsugae sp. nov. and Paraburkholderia elongata sp. nov., phenolic acid-degrading bacteria isolated from forest soil and emended description of Paraburkholderia madseniana . Int J Syst Evol Microbiol 2020; 70:5093–5105 [View Article][PubMed]
    [Google Scholar]
  50. Trinh NH, Kim J. Paraburkholderia flava sp. nov., isolated from cool temperate forest soil. Int J Syst Evol Microbiol 2020; 70:2509–2514 [View Article][PubMed]
    [Google Scholar]
  51. Tapia-García EY, Arroyo-Herrera I, Rojas-Rojas FU, Ibarra JA, Vásquez-Murrieta MS et al. Paraburkholderia lycopersici sp. nov., a nitrogen-fixing species isolated from rhizoplane of Lycopersicon esculentum Mill. var. saladette in Mexico. Syst Appl Microbiol 2020; 43:126133 [View Article][PubMed]
    [Google Scholar]
  52. Wilhelm RC, Murphy SJL, Feriancek NM, Karasz DC, DeRito CM et al. Paraburkholderia madseniana sp. nov., a phenolic acid-degrading bacterium isolated from acidic forest soil. Int J Syst Evol Microbiol 2020; 70:2137–2146 [View Article][PubMed]
    [Google Scholar]
  53. Huo Y, Chokkalingam M, Kang J-P, Ahn J-C, Yang D-C. Paraburkholderia panacisoli sp. nov., a potentially antagonistic bacterium against the root rot fungal pathogen Cylindrocarpon destructans, isolated from ginseng cultivation soil. Arch Microbiol 2020; 202:1341–1347 [View Article][PubMed]
    [Google Scholar]
  54. Mavima L, Beukes CW, Palmer M, De Meyer SE, James EK. Paraburkholderia youngii sp. nov. and ‘Paraburkholderia atlantica’ – Brazilian and Mexican Mimosa-associated rhizobia that were previously known as Paraburkholderia tuberum sv. mimosae. Syst Appl Microbiol 2020; 126152:
    [Google Scholar]
  55. Khairnar M, Hagir A, Narayan A, Jain K, Madamwar D. Rhizobium desertarenae sp. nov., isolated from the saline desert soil from the Rann of Kachchh, India. bioRxiv 2020
    [Google Scholar]
  56. Liu L, Liang L, Xu L, Chi M, Zhang X et al. Rhizobium deserti sp. nov isolated from biological soil crusts collected at Mu Us sandy land, China. Curr Microbiol 2020; 77:327–333 [View Article][PubMed]
    [Google Scholar]
  57. Ouyabe M, Tanaka N, Shiwa Y, Fujita N, Kikuno H et al. Rhizobium dioscoreae sp. nov., a plant growth-promoting bacterium isolated from yam (Dioscorea species). Int J Syst Evol Microbiol 2020; 70:5054–5062 [View Article][PubMed]
    [Google Scholar]
  58. Zhao J, Zhao X, Wang J, Gong Q, Zhang X et al. Isolation, identification and characterization of endophytic bacterium Rhizobium oryzihabitans sp. nov., from rice root with biotechnological potential in agriculture. Microorganisms 2020; 8:608 [View Article][PubMed]
    [Google Scholar]
  59. Gao J-L, Wang L-W, Xue J, Tong S, Peng G et al. Rhizobium rhizophilum sp. nov., an indole acetic acid-producing bacterium isolated from rape (Brassica napus L.) rhizosphere soil. Int J Syst Evol Microbiol 2020; 70:5019–5025 [View Article][PubMed]
    [Google Scholar]
  60. Ruan Z-P, Cao W-M, Zhang X, Liu J-T-Y, Zhu J-C et al. Rhizobium terrae sp. nov., isolated from an oil-contaminated soil in China. Curr Microbiol 2020; 77:1117–1124 [View Article][PubMed]
    [Google Scholar]
  61. Estrada-de Los Santos P, Palmer M, Steenkamp ET, Maluk M, Beukes C et al. Trinickia dabaoshanensis sp. nov., a new name for a lost species. Arch Microbiol 2019; 201:1313–1316 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004784
Loading
/content/journal/ijsem/10.1099/ijsem.0.004784
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error