1887

Abstract

Four strains (9CBEGH2, 9BBH35, 6BBH38 and 6EGH11) of Gram-stain-positive, obligately anaerobic, rod-shaped bacteria were isolated from faecal samples from healthy Japanese humans. The results of 16S rRNA gene sequence analysis indicated that the four strains represented members of the family and formed a monophyletic cluster with ‘’ strain N6H1-5 (99.4% sequence similarity) and sp. Marseille-P5640 (99.3 %). JCM 10413 (94.2 %) and ATCC 25548 (93.7 %) were located near this monophyletic cluster. The isolates, 9CBEGH2, ‘’ JCM 30884 and sp. Marseille-P5640 shared 98.7–99.1% average nucleotide identity (ANI) with each other. Moreover, the DNA–DNA hybridization (DDH) values among three strains were 88.4–90.6%, indicating that these strains represent the same species. Strain 9CBEGH2 showed 21.5–24.1 % DDH values with other related taxa. In addition, the ANI values between strain 9CBEGH2 and other related taxa ranged from 71.2 % to 73.5 %, indicating that this strain should be considered as representing a novel species on the basis of whole-genome relatedness. Therefore, we formally propose a novel name for ‘’ strains identified because the name ‘’ has been effectively, but not validly, published since 2017. On the basis of the collected data, strain 9CBEGH2 represents a novel species of a novel genus, for which the name gen. nov., sp. nov. is proposed. The type strain of is 9CBEGH2 (=JCM 33778=DSM 110575).

Funding
This study was supported by the:
  • Moriya Ohkuma , RIKEN
  • Hiroshi Mori , Japan Agency for Medical Research and Development , (Award JP19gm1010006)
  • Atsushi Toyoda , Japan Agency for Medical Research and Development , (Award JP19gm1010006)
  • Mitsuo Sakamoto , Japan Agency for Medical Research and Development , (Award JP19gm6010007)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004215
2020-05-14
2020-06-02
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/10.1099/ijsem.0.004215/ijsem004215.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004215&mimeType=html&fmt=ahah

References

  1. Paek J, Shin Y, Kim J-S, Kim H, Kook J-K et al. Description of Absiella argi gen. nov., sp. nov., and transfer of Eubacterium dolichum and Eubacterium tortuosum to the genus Absiella as Absiella dolichum comb. nov. and Absiella tortuosum comb. nov. Anaerobe 2017; 48: 70 75 [CrossRef] [PubMed] [PubMed]
    [Google Scholar]
  2. Sakamoto M, Suzuki M, Umeda M, Ishikawa I, Benno Y. Reclassification of Bacteroides forsythus (Tanner et al. 1986) as Tannerella forsythensis corrig., gen. nov., comb. nov. Int J Syst Evol Microbiol 2002; 52: 841 849 [CrossRef] [PubMed] [PubMed]
    [Google Scholar]
  3. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67: 1613 1617 [CrossRef] [PubMed] [PubMed]
    [Google Scholar]
  4. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23: 2947 2948 [CrossRef] [PubMed] [PubMed]
    [Google Scholar]
  5. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16: 111 120 [CrossRef] [PubMed] [PubMed]
    [Google Scholar]
  6. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406 425 [CrossRef] [PubMed] [PubMed]
    [Google Scholar]
  7. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17: 368 376 [CrossRef] [PubMed] [PubMed]
    [Google Scholar]
  8. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33: 1870 1874 [CrossRef] [PubMed] [PubMed]
    [Google Scholar]
  9. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39: 783 791 [CrossRef] [PubMed] [PubMed]
    [Google Scholar]
  10. Sakamoto M, Ohkuma M. Usefulness of the hsp60 gene for the identification and classification of Gram-negative anaerobic rods. J Med Microbiol 2010; 59: 1293 1302 [CrossRef] [PubMed] [PubMed]
    [Google Scholar]
  11. Sakamoto M, Suzuki N, Benno Y. hsp60 and 16S rRNA gene sequence relationships among species of the genus Bacteroides with the finding that Bacteroides suis and Bacteroides tectus are heterotypic synonyms of Bacteroides pyogenes . Int J Syst Evol Microbiol 2010; 60: 2984 2990 [CrossRef] [PubMed] [PubMed]
    [Google Scholar]
  12. Tanizawa Y, Fujisawa T, Kaminuma E, Nakamura Y, Arita M. DFAST and DAGA: web-based integrated genome annotation tools and resources. Biosci Microbiota Food Health 2016; 35: 173 184 [CrossRef] [PubMed] [PubMed]
    [Google Scholar]
  13. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68: 461 466 [CrossRef] [PubMed] [PubMed]
    [Google Scholar]
  14. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14: 60 [CrossRef] [PubMed] [PubMed]
    [Google Scholar]
  15. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110: 1281 1286 [CrossRef] [PubMed] [PubMed]
    [Google Scholar]
  16. Sakamoto M, Iino T, Ohkuma M. Faecalimonas umbilicata gen. nov., sp. nov., isolated from human faeces, and reclassification of Eubacterium contortum, Eubacterium fissicatena and Clostridium oroticum as Faecalicatena contorta gen. nov., comb. nov., Faecalicatena fissicatena comb. nov. and Faecalicatena orotica comb. nov. Int J Syst Evol Microbiol 2017; 67: 1219 1227 [CrossRef] [PubMed] [PubMed]
    [Google Scholar]
  17. Browne HP, Forster SC, Anonye BO, Kumar N, Neville BA et al. Culturing of 'unculturable' human microbiota reveals novel taxa and extensive sporulation. Nature 2016; 533: 543 546 [CrossRef] [PubMed] [PubMed]
    [Google Scholar]
  18. McClung LS, Lindberg RB. The study of obligately anaerobic bacteria. In Pelczar MJ. editor Manual of Microbiological Methods New York: McGraw-Hill; 1957 pp 120 139
    [Google Scholar]
  19. Shah HN. The genus Bacteroides and related taxa. In Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH. (editors) The Prokaryotes , 2nd ed. New York: Springer; 1992 pp 3593 3607
    [Google Scholar]
  20. Holdeman LV, Cato EP, Moore WEC. Anaerobe Laboratory Manual , 4th ed. Blacksburg, VA: Virginia Polytechnic Institute and State University; 1977
    [Google Scholar]
  21. Pramono AK, Sakamoto M, Iino T, Hongoh Y, Ohkuma M. Dysgonomonas termitidis sp. nov., isolated from the gut of the subterranean termite Reticulitermes speratus . Int J Syst Evol Microbiol 2015; 65: 681 685 [CrossRef] [PubMed] [PubMed]
    [Google Scholar]
  22. Kuykendall LD, Roy MA, O’Neill JJ, Devine TE. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum . Int J Syst Bacteriol 1988; 38: 358 361 [CrossRef]
    [Google Scholar]
  23. Miller LT. Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 1982; 16: 584 586 [CrossRef] [PubMed] [PubMed]
    [Google Scholar]
  24. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959; 37: 911 917 [CrossRef] [PubMed] [PubMed]
    [Google Scholar]
  25. Komagata K, Suzuki K. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19: 161 207
    [Google Scholar]
  26. Dittmer JC, Lester RL. A simple, specific spray for the detection of phospholipids on thin-layer chromatograms. J Lipid Res 1964; 5: 126 127 [PubMed] [PubMed]
    [Google Scholar]
  27. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014; 12: 635 645 [CrossRef] [PubMed] [PubMed]
    [Google Scholar]
  28. Barco RA, Garrity GM, Scott JJ, Amend JP, Nealson KH et al. A genus definition for Bacteria and Archaea based on genome relatedness and taxonomic affiliation. bioRxiv 2018; 392480:
    [Google Scholar]
  29. Moore WEC, Johnson JL, Holdeman LV. Emendation of Bacteroidaceae and Butyrivibrio and descriptions of Desulfomonas gen. nov. and ten new species in the genera Desulfomonas, Butyrivibrio, Eubacterium, Clostridium, and Ruminococcus . Int J Syst Bacteriol 1976; 26: 238 252 [CrossRef]
    [Google Scholar]
  30. Lagkouvardos I, Pukall R, Abt B, Foesel BU, Meier-Kolthoff JP et al. The mouse intestinal bacterial collection (miBC) provides host-specific insight into cultured diversity and functional potential of the gut microbiota. Nat Microbiol 2016; 1: 16131 [CrossRef] [PubMed] [PubMed]
    [Google Scholar]
  31. Ghimire S, Wongkkuna S, Scaria J. Description of a new member of the family Erysipelotrichaceae: Clostridium fusiformis sp. nov., isolated from healthy human feces.. bioRxiv 2019; 734715:
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004215
Loading
/content/journal/ijsem/10.1099/ijsem.0.004215
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error