1887

Abstract

Three isolates, 5K138, 8K307 and KC603, with typical morphological characteristics of members of the genus were obtained during a study searching for novel actinobacteria with biosynthetic potential from the Karakum Desert. A polyphasic approach was adopted to determine taxonomic affiliations of the strains. The strains showed chemotaxonomic properties consistent with their classification as representing members of the genus such as -diaminopimelic acid in the cell wall peptidoglycan, diphosphatidylglycerol, phosphatidylglycerol and phosphatidylinositol as major polar lipids as well as MK-9(H) as a major menaquinone. Pairwise sequence comparisons of the 16S rRNA genes showed that the strains were closely related to DSM 45237, NEAU-YY265 and 3SM4-07 with higher than 99 % sequence identities. However, a combination of phenotypic and phylogenetic approaches as well as genome-based comparative analyses confirmed the taxonomic positions of these strains as representing distinct species within the genus . Therefore, strains 5K138, 8K307 and KC603 should each be classified as representing a novel species within the genus , for which the names sp. nov., sp. nov. and sp. nov. are proposed, respectively. The type strains of the proposed novel species are as follows: 5K138 (=JCM 33518=CGMCC 4.7672), 8K307 (=JCM 33519=CGMCC 4.7621) and KC603 (=JCM 33520=CGMCC 4.7618).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004011
2020-01-28
2020-02-28
Loading full text...

Full text loading...

References

  1. Song L, Li W-J, Wang Q-L, Chen G-Z, Zhang Y-S et al. Jiangella gansuensis gen. nov., sp. nov., a novel actinomycete from a desert soil in north-west China. Int J Syst Evol Microbiol 2005;55: 881– 884 [CrossRef]
    [Google Scholar]
  2. Tang S-K, Zhi X-Y, Wang Y, Shi R, Lou K et al. Haloactinopolyspora alba gen. nov., sp. nov., a halophilic filamentous actinomycete isolated from a salt lake, with proposal of Jiangellaceae fam. nov. and Jiangellineae subord. nov. Int J Syst Evol Microbiol 2011;61: 194– 200 [CrossRef]
    [Google Scholar]
  3. Li L, Li S-H, Hozzein WN, Osman G, Li W-J et al. Phytoactinopolyspora endophytica gen. nov., sp. nov., a halotolerant filamentous actinomycete isolated from the roots of Glycyrrhiza uralensis F. Int J Syst Evol Microbiol 2015;65: 2671– 2677 [CrossRef]
    [Google Scholar]
  4. Qin S, Zhao G-Z, Li J, Zhu W-Y, Xu L-H et al. Jiangella alba sp. nov., an endophytic actinomycete isolated from the stem of Maytenus austroyunnanensis. Int J Syst Evol Microbiol 2009;59: 2162– 2165 [CrossRef]
    [Google Scholar]
  5. Lee SD. Jiangella alkaliphila sp. nov., an actinobacterium isolated from a cave. Int J Syst Evol Microbiol 2008;58: 1176– 1179 [CrossRef]
    [Google Scholar]
  6. Niemhom N, Chutrakul C, Suriyachadkun C, Tadtong S, Thawai C. Jiangella endophytica sp. nov., an endophytic actinomycete isolated from the rhizome of Kaempferia elegans. Int J Syst Evol Microbiol 2019;69: 454– 459 [CrossRef]
    [Google Scholar]
  7. Han C, Zhao J, Shi H, Tian Y, Zhang C et al. Jiangella rhizosphaerae sp. nov., an actinomycete isolated from the rhizosphere soil of wheat (Triticum aestivum L.). Int J Syst Evol Microbiol 2019;69: 1320– 1326 [CrossRef]
    [Google Scholar]
  8. Ay H, Nouioui I, Carro L, Klenk H-P, Cetin D et al. Jiangella anatolica sp. nov. isolated from coastal lake soil. Antonie van Leeuwenhoek 2019;112: 887– 895 [CrossRef]
    [Google Scholar]
  9. Suksaard P, Duangmal K, Srivibool R, Xie Q, Hong K et al. Jiangella mangrovi sp. nov., isolated from mangrove soil. Int J Syst Evol Microbiol 2015;65: 2569– 2573 [CrossRef]
    [Google Scholar]
  10. Kämpfer P, Schäfer J, Lodders N, Martin K. Jiangella muralis sp. nov., from an indoor environment. Int J Syst Evol Microbiol 2011;61: 128– 131 [CrossRef]
    [Google Scholar]
  11. Abdelkader MSA, Philippon T, Asenjo JA, Bull AT, Goodfellow M et al. Asenjonamides A-C, antibacterial metabolites isolated from Streptomyces asenjonii strain KNN 42.f from an extreme-hyper arid Atacama desert soil. J Antibiot 2018;71: 425– 431 [CrossRef]
    [Google Scholar]
  12. Goodfellow M, Nouioui I, Sanderson R, Xie F, Bull AT. Rare taxa and dark microbial matter: novel bioactive actinobacteria abound in Atacama desert soils. Antonie van Leeuwenhoek 2018;111: 1315– 1332 [CrossRef]
    [Google Scholar]
  13. Rateb ME, Ebel R, Jaspars M. Natural product diversity of actinobacteria in the Atacama desert. Antonie van Leeuwenhoek 2018;111: 1467– 1477 [CrossRef]
    [Google Scholar]
  14. Saygin H, Ay H, Guven K, Cetin D, Sahin N et al. Desertiactinospora gelatinilytica gen. nov., sp. nov., a new member of the family Streptosporangiaceae isolated from the Karakum Desert. Antonie van Leeuwenhoek 2019;112: 409– 423 [CrossRef]
    [Google Scholar]
  15. Saygin H, Ay H, Guven K, Sahin N. Kribbella turkmenica sp. nov., isolated from the Karakum Desert. Int J Syst Evol Microbiol 2019;69: 2533– 2540 [CrossRef]
    [Google Scholar]
  16. Hayakawa M, Nonomura H. Humic acid–vitamin agar, a new medium for the selective isolation of soil actinomycetes. J Ferment Tech 1987;65: 501– 509 [CrossRef]
    [Google Scholar]
  17. Sanglier JJ, Whitehead D, Saddler GS, Ferguson EV, Goodfellow M. Pyrolysis mass spectrometry as a method for the classification, identification and selection of actinomycetes. Gene 1992;115: 235– 242 [CrossRef]
    [Google Scholar]
  18. Reasoner DJ, Geldreich EE. A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 1985;49: 1– 7 [CrossRef]
    [Google Scholar]
  19. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966;16: 313– 340 [CrossRef]
    [Google Scholar]
  20. Chun J, Goodfellow M. A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. Int J Syst Bacteriol 1995;45: 240– 245 [CrossRef]
    [Google Scholar]
  21. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991;173: 697– 703 [CrossRef]
    [Google Scholar]
  22. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67: 1613– 1617 [CrossRef]
    [Google Scholar]
  23. Meier-Kolthoff JP, Göker M, Spröer C, Klenk H-P. When should a DDH experiment be mandatory in microbial taxonomy?. Arch Microbiol 2013;195: 413– 418 [CrossRef]
    [Google Scholar]
  24. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14: 60 [CrossRef]
    [Google Scholar]
  25. Meier-Kolthoff JP, Hahnke RL, Petersen J, Scheuner C, Michael V et al. Complete genome sequence of DSM 30083T, the type strain (U5/41T) of Escherichia coli, and a proposal for delineating subspecies in microbial taxonomy. Stand Genomic Sci 2014;9: 2 [CrossRef]
    [Google Scholar]
  26. Edgar RC. Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004;32: 1792– 1797 [CrossRef]
    [Google Scholar]
  27. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014;30: 1312– 1313 [CrossRef]
    [Google Scholar]
  28. Goloboff PA, Farris JS, Nixon KC. TNT, a free program for phylogenetic analysis. Cladistics 2008;24: 774– 786 [CrossRef]
    [Google Scholar]
  29. Pattengale ND, Alipour M, Bininda-Emonds ORP, Moret BME, Stamatakis A. How many bootstrap replicates are necessary?. J Comput Biol 2010;17: 337– 354 [CrossRef]
    [Google Scholar]
  30. Swofford D. PAUP* version 4.0 b10 Sinauer, Sunderland, MA: 2002
    [Google Scholar]
  31. Lefort V, Desper R, Gascuel O. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol 2015;32: 2798– 2800 [CrossRef]
    [Google Scholar]
  32. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008;9: 75 [CrossRef]
    [Google Scholar]
  33. Blin K, Wolf T, Chevrette MG, Lu X, Schwalen CJ et al. antiSMASH 4.0—improvements in chemistry prediction and gene cluster boundary identification. Nucleic Acids Res 2017;45: W36– W41 [CrossRef]
    [Google Scholar]
  34. Wattam AR, Davis JJ, Assaf R, Boisvert S, Brettin T et al. Improvements to PATRIC, the all-bacterial bioinformatics database and analysis resource center. Nucleic Acids Res 2017;45: D535– D542 [CrossRef]
    [Google Scholar]
  35. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019;10: 2182 [CrossRef]
    [Google Scholar]
  36. Lagesen K, Hallin P, Rødland EA, Stærfeldt H-H, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007;35: 3100– 3108 [CrossRef]
    [Google Scholar]
  37. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J et al. BLAST+: architecture and applications. BMC Bioinformatics 2009;10: 421 [CrossRef]
    [Google Scholar]
  38. Farris JS. Estimating phylogenetic trees from distance matrices. Am Nat 1972;106: 645– 668 [CrossRef]
    [Google Scholar]
  39. Kreft L, Botzki A, Coppens F, Vandepoele K, Van Bel M. PhyD3: a phylogenetic tree viewer with extended phyloXML support for functional genomics data visualization. Bioinformatics 2017;33: 2946– 2947 [CrossRef]
    [Google Scholar]
  40. Liu Y, Lai Q, Göker M, Meier-Kolthoff JP, Wang M et al. Genomic insights into the taxonomic status of the Bacillus cereus group. Sci Rep 2015;5: 14082 [CrossRef]
    [Google Scholar]
  41. Goris J, Klappenbach JA, Vandamme P, Coenye T, Konstantinidis KT et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007;57: 81– 91 [CrossRef]
    [Google Scholar]
  42. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M et al. Versatile and open software for comparing large genomes. Genome Biol 2004;5: R12 [CrossRef]
    [Google Scholar]
  43. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016;32: 929– 931 [CrossRef]
    [Google Scholar]
  44. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the AD hoc Committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987;37: 463– 464 [CrossRef]
    [Google Scholar]
  45. Tang SK, Zhi XY, WJ L. Jiangellaceae Bergey's Manual of Systematics of Archaea and Bacteria 2015; pp 1
    [Google Scholar]
  46. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974;28: 226– 231 [CrossRef]
    [Google Scholar]
  47. Lechevalier MP, Lechevalier H. Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 1970;20: 435– 443 [CrossRef]
    [Google Scholar]
  48. Miller LT. Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 1982;16: 584– 586 [CrossRef]
    [Google Scholar]
  49. Kuykendall LD, Roy MA, O'NEILL JJ, Devine TE. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 1988;38: 358– 361 [CrossRef]
    [Google Scholar]
  50. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. MIDI Inc., Newark; 1990
  51. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2: 233– 241 [CrossRef]
    [Google Scholar]
  52. Kroppenstedt RM, Goodfellow M. The family Thermomonosporaceae: Actinocorallia, Actinomadura, Spirillospora and Thermomonospora The Prokaryotes: Springer; 2006; pp 682– 724
  53. Collins M, Goodfellow M. Isoprenoid quinone analysis in bacterial classification and identification In Goodfellow M, Minnikin DE. (editors) Chemical Methods in Bacterial Systematics Academic Press; 1985; pp 267– 285
    [Google Scholar]
  54. Jones KL. Fresh isolates of actinomycetes in which the presence of sporogenous aerial mycelia is a fluctuating characteristic. J Bacteriol 1949;57: 141– 145 [CrossRef]
    [Google Scholar]
  55. Waksman SA. The Actinomycetes A summary of current knowledge New York: Ronald Press; 1967
    [Google Scholar]
  56. Waksman SA. The Actinomycetes. Vol. II. Classification, identification and descriptions of genera and species Baltimore: Williams & Wilkins; 1961
  57. Kelly KL. Inter-Society Color Council – National Bureau of Standards Color-Name Charts Illustrated with Centroid Colors Washington, DC: US Government Printing Office; 1964
    [Google Scholar]
  58. Williams ST, Goodfellow M, Alderson G, Wellington EMH, Sneath PHA et al. Numerical classification of Streptomyces and related genera. Microbiology 1983;129: 1743– 1813 [CrossRef]
    [Google Scholar]
  59. Goodfellow M. Numerical taxonomy of some nocardioform bacteria. J Gen Microbiol 1971;69: 33– 80 [CrossRef]
    [Google Scholar]
  60. Gordon RE, Barnett DA, Handerhan JE, Pang CH-N. Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int J Syst Bacteriol 1974;24: 54– 63 [CrossRef]
    [Google Scholar]
  61. Nithya K, Muthukumar C, Biswas B, Alharbi NS, Kadaikunnan S et al. Desert actinobacteria as a source of bioactive compounds production with a special emphases on pyridine-2,5-diacetamide a new pyridine alkaloid produced by Streptomyces sp. DA3-7. Microbiol Res 2018;207: 116– 133 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004011
Loading
/content/journal/ijsem/10.1099/ijsem.0.004011
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error