- Volume 70, Issue 3, 2020
Volume 70, Issue 3, 2020
- Validation List
-
- Notification List
-
- New Taxa
-
- Actinobacteria
-
-
Amycolatopsis acidicola sp. nov., isolated from peat swamp forest soil
More LessA novel actinobacterial strain, designated K81G1T, was isolated from a soil sample collected in Kantulee peat swamp forest, Surat Thani Province, Thailand, and its taxonomic position was determined using a polyphasic approach. Optimal growth of strain K81G1T occurred at 28–30 °C, at pH 5.0–6.0 and without NaCl. Strain K81G1T had cell-wall chemotype IV (meso-diaminopimelic acid as the diagnostic diamino acid, and arabinose and galactose as diagnostic sugars) and phospholipid pattern type II, characteristic of the genus Amycolatopsis . It contained MK-9(H4) as the predominant menaquinone, iso-C16 : 0, C17 : 0 cyclo and C16 : 0 as the major cellular fatty acids, and phospholipids consisting of phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, hydroxyphosphatidylethanolamine, phosphatidylinositol and two unidentified phospholipids. Based on 16S rRNA gene sequence similarity and phylogenetic analyses, strain K81G1T was most closely related to Amycolatopsis rhizosphaerae TBRC 6029T (97.8 % similarity), Amycolatopsis acidiphila JCM 30562T (97.8 %) and Amycolatopsis bartoniae DSM 45807T (97.6 %). Strain K81G1T exhibited low average nucleotide identity and digital DNA–DNA hybridization values with A. rhizosphaerae TBRC 6029T (76.4 %, 23.0 %), A. acidiphila JCM 30562T (77.9 %, 24.6 %) and A. bartoniae DSM 45807T (77.8 %, 24.3 %). The DNA G+C content of strain K81G1T was 69.7 mol%. Based on data from this polyphasic study, strain K81G1T represents a novel species of the genus Amycolatopsis , for which the name Amycolatopsis acidicola sp. nov. is proposed. The type strain is K81G1T (=TBRC 10047T=NBRC 113896T).
-
-
-
Tessaracoccus antarcticus sp. nov., a rhodopsin-containing bacterium from an Antarctic environment and emended description of the genus Tessaracoccus
More LessA Gram-stain-positive, facultatively anaerobic bacterium, strain JDX10T, was isolated from a soil sample of Fildes Peninsula, Antarctica. Cells of the strain were irregular rod-shaped and non-motile. Cells grew at 4–40 °C (optimum, 28 °C), at pH 6.0–9.0 (optimum, 7.5) and with 0.0–3.0 % (w/v) NaCl (optimum, 1.0 %). According to phylogenetic analysis based on 16S rRNA gene sequences, strain JDX10T was associated with the genus Tessaracoccus , and showed highest similarities to Tessaracoccus rhinocerotis CCTCC AB 2013217T (97.2 %), Tessaracoccus flavescens SST-39T (96.9 %) and Tessaracoccus terricola JCM 32157T (96.9 %). The average nucleotide identity scores of strain JDX10T to T. rhinocerotis CCTCC AB 2013217T and T. bendigoensis JCM 13525T were 74.8 and 73.3 %, respectively and the Genome-to-Genome Distance Calculator scores were 19.2 and 18.7 %, respectively. The major (>10.0 %) cellular fatty acid was anteiso-C15 : 0. The predominant isoprenoid quinone was MK-10(H4). The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and one unidentified glycolipid. The phylogenetic analysis and physiological and biochemical data showed that strain JDX10T should be classified as representing a novel species in the genus Tessaracoccus , for which the name Tessaracoccus antarcticus sp. nov. is proposed. The type strain is JDX10T (=MCCC 1H00351T=KCTC 49242T).
-
-
-
Bifidobacterium tibiigranuli sp. nov. isolated from homemade water kefir
More LessTwo Bifidobacterium strains, TMW 2.2057T and TMW 2.1764 were isolated from two different homemade water kefirs from Germany. Both strains were oxidase- and catalase-negative and Gram-staining-positive. Cells were non-motile, irregular rods that were aerotolerant anaerobes. On basis of fructose 6-phosphate phosphoketolase activity, they were assigned to the family Bifidobacteriaceae. Comparative analysis of 16S rRNA and concatenated housekeeping genes (clpC, dnaB, dnaG, dnaJ, hsp60 and rpoB) demonstrated that both strains represented a member of the genus Bifidobacterium , with Bifidobacterium subtile DSM 20096T as the closest phylogenetic relative (98.35 % identity). Both strains can be distinguished using randomly amplified polymorphic DNA fingerprinting. Analysis of concatenated marker gene sequences as well as average nucleotide identity by blast (ANIb) and in silico DNA–DNA hybridization (isDDH) calculations of their genome sequences confirmed Bifidobacterium subtile DSM 20096T as the closest relative (87.91 and 35.80 % respectively). All phylogenetic analyses allow differentiation of strains TMW 2.2057T and TMW 2.1764 from all hitherto described species of the genus Bifidobacterium with validly published names. We therefore propose a novel species with the name Bifidobacterium tibiigranuli, for which TMW 2.2057T (=DSM 108414T=LMG 31086T) is the type strain.
-
-
-
Classification of ‘Streptomyces hyalinum’ Hamada and Yokoyama as Embleya hyalina sp. nov., the second species in the genus Embleya, and emendation of the genus Embleya
The 16S rRNA gene sequence of ‘Streptomyces hyalinum’ NBRC 13850T shows 99.7 % similarity to that of Embleya scabrispora DSM 41855T; however, it shows <96.1 % similarity to any other type strains, including Streptomyces spp. Phylogenetic analysis based on 16S rRNA gene sequences clearly suggests that ‘S. hyalinum’ belongs to the genus Embleya rather than to Streptomyces . The strain possesses ll-diaminopimelic acid in the cell wall. The major menaquinone observed is MK-9(H6), and MK-9(H4) and MK-9(H8) are minor components. The major polar lipids are diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylinositol. In this study, the whole genome of strain NBRC 13850T was sequenced, and digital DNA–DNA hybridisation between ‘S. hyalinum’ NBRC 13850T and E. scabrispora DSM 41855T demonstrated 31.2 % of relatedness value between the two genomes. Morphological, chemotaxonomic, biochemical and physiological data also revealed that ‘S. hyalinum’ can be easily differentiated from E. scabrispora (the only the valid species of the genus Embleya ) and that it merits separate species status. This phenotypic and genetic evidence reveals that ‘S. hyalinum’ represents a novel species of the genus Embleya ; the name Embleya hyalina sp. nov. is proposed for this species. The type strain is NBRC 13850T (=ATCC 29817T=MB 891-A1T). We also emended the description of the genus Embleya considering the feature of E. hyalina.
-
-
-
Senegalimassilia faecalis sp. nov., an anaerobic actinobacterium isolated from human faeces, and emended description of the genus Senegalimassilia
A novel actinobacterial strain, designated KGMB04484T, was isolated from healthy human faeces sampled in the Republic of Korea. Cells of strain KGMB04484T were strictly anaerobic, Gram-stain-positive, catalase-positive, oxidase-negative, non-motile coccobacilli and formed tiny colonies on Columbia agar with 5 % horse blood. On the basis of 16S rRNA gene sequence similarity, strain KGMB04484T was affiliated with the genus Senegalimassilia in the family Coriobacteriaceae and its closest relative was Senegalimassilia anaerobia JC110T (96.28 % sequence similarity). The DNA G+C content of strain KGMB04484T was 61.2 mol%. The polar lipids contained diphosphatidylglycerol, phosphatidylglycerol, an unidentified phospholipid, an unidentified aminolipid and three unidentified glycolipids. The predominant cellular fatty acids (>10 %) of strain KGMB04484T were C14 : 0, C16 : 0 and C16 : 0 dimethyl acetal. Based on its phylogenetic, physiological and chemotaxonomic characteristics, strain KGMB04484T is considered to represent a novel species within the genus Senegalimassilia , for which the name Senegalimassilia faecalis sp. nov. is proposed. The type strain is KGMB04484T (=KCTC 15721T=CCUG 72347T).
-
-
-
Ornithinimicrobium cerasi sp. nov., isolated from the fruit of Cerasus pseudocerasus and emended description of the genus Ornithinimicrobium
Strain CPCC 203383T, isolated from the surface-sterilized fruit of Cerasus pseudocerasus (Lindl.) G. Don, was taxonomically characterized based on a polyphasic investigation. It had the highest 16S rRNA gene sequence similarities with Ornithinimicrobium pekingense DSM 21552 (97.2 %) and O. kibberense DSM 17687T (97.2%). Phylogenetic analysis based on 16S rRNA gene sequences showed that the strain formed a distinct phyletic branch within the genus Ornithinimicrobium and the whole genome sequence data analyses supported that strain CPCC 203383T was phylogenetically related to the Ornithinimicrobium species. The isolate shared a range of phenotypic patterns reported for members of the genus Ornithinimicrobium , but also had a range of cultural, physiological and biochemical characteristics that separated it from related Ornithinimicrobium species. The menaquinone was MK-8(H4). The polar lipid profile consisted of diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), phosphatidylinositol (PI) and unidentified lipids (ULs). The major fatty acids (>5 %) were iso-C15 : 0, anteiso-C15 : 0, iso-C16:0, 9-methyl C16 : 0, iso-C17 : 0 and anteiso-C17 : 0. The cell wall peptidoglycan contains l-ornithine as diagnostic diamino acid and an interpeptide bridge consisting of L-Orn←L-Ala←Gly←D-Asp. The combined genotypic and phenotypic data indicated that the isolate represents a novel species of the genus Ornithinimicrobium, for which the name Ornithinimicrobium cerasi sp. nov. is proposed, with CPCC 203383T(=NBRC 113522T=KCTC 49200T) as the type strain. The DNA G+C composition is 72.3 mol%. The availability of new data allows for an emended description of the genus Ornithinimicrobium .
-
-
-
Segeticoccus rhizosphaerae gen. nov., sp. nov., an actinobacterium isolated from soil of a farming field
More LessA Gram-stain-positive actinobacterial strain, designated YJ01T, was isolated from a spinach farming field soil at Shinan in Korea. Strain YJ01T was aerobic, non-motile, non-spore-forming cocci with diameters of 1.5–1.9 µm, and was able to grow at 10–37 °C (optimum, 28–30 °C), at pH 4.5–9.0 (optimum, pH 7.0–8.0) and at salinities of 0–7.5 % (w/v) NaCl (optimum, 1.0 % NaCl). Sequence similarities of the 16S rRNA gene of strain YJ01T with closely related relatives were in the range 96.2–92.8 %, and the results of phylogenomic analysis indicated that strain YJ01T was clearly separated from species of genera in the family Intrasporangiaceae showing average nucleotide identity values of 84.2–83.4 %. The predominant isoprenoid quinone was identified as MK-8(H4) and the major fatty acids were iso-C15 : 0, iso-C16:1 h, iso-C16 : 0 and anteiso-C17 : 1ω9c. The diagnostic diamino acid of the peptidoglycan was ornithine, and the interpeptide bridge was l-Orn–Gly2–d-Glu. The major polar lipids were identified as diphosphatidylglycerol, phosphatidylglycerol, phosphatidylserine, an unidentified phosphatidylglycolipid, two unidentified phosphoaminolipids and an unidentified phosphoglycoaminolipid. The G+C content of the genome was 70.1 mol%. On the basis of phenotypic and chemotaxonomic properties and phylogenetic and phylogenomic analyses using 16S rRNA gene sequences and whole-genome sequences, strain YJ01T is considered to represent a novel species of a new genus in the family Intrasporangiaceae , for which the name Segeticoccus rhizosphaerae gen. nov. sp. nov. is proposed. The type strain of Segeticoccus rhizosphaerae is YJ01T (=KACC 19547T=NBRC 113173T).
-
-
-
Ornithinicoccus soli sp. nov., isolated from farmland soil
A Gram-stain-positive, aerobic, non-motile and coccoid-shaped bacterium, designated XNB-1T, was isolated from farmland soil in Taian, Shandong province, China. Strain XNB-1T contained iso-C15 : 0 and iso-C16 : 0 as the predominant fatty acids. The diagnostic diamino acid of the peptidoglycan was ornithine, and the interpeptide bridge was l-Orn←Gly(1, 2)←d-Glu. The polar lipid profile of strain XNB-1T consisted of diphosphatidylglycerol, phosphatidylglycerol, an unidentified phosphoglycolipid and three unidentified phospholipids. The predominant menaquinone of strain XNB-1T was MK-8(H4) and the DNA G+C content was 70.1 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain XNB-1T belonged to the genus Ornithinicoccus , and shared the highest similarity with Ornithinicoccus hortensis HKI 0125T (96.0 %), followed by Ornithinicoccus halotolerans EGI 80423T (95.5 %). Genome-based analysis of average nucleotide identity of strain XNB-1T with O. hortensis HKI 0125T and O. halotolerans EGI 80423T yielded values of 73.1 and 73.3 %, respectively, while the digital DNA–DNA hybridization values were 19.5 and 19.9 %, respectively. On the basis of phenotypic, chemotaxonomic and phylogenetic data, strain XNB-1T is considered to represent a novel species of the genus Ornithinicoccus , for which the name Ornithinicoccus soli sp. nov. is proposed. The type strain is XNB-1T (=CCTCC AB 2019099T=KCTC 49259T).
-
-
-
Streptomyces qinzhouensis sp. nov., a mangrove soil actinobacterium
More LessA novel Streptomyces strain (SSL-25T) was isolated from mangrove soil sampled at QinzhouBay, PR China. The isolate was observed to be Gram-stain-positive and to form greyish-white aerial mycelia that differentiated into straight spore chains with smooth-surfaced spores on International Streptomyces Project 2 medium. The cell-wall peptidoglycan was determined to contain ll-diaminopimelicacid. The cell-wall sugars were glucose and mannose. The predominant menaquinones were MK-9 (H6), MK-9 (H8) and MK-9 (H4). The major polar lipids contained diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, phosphatidylinositol mannoside and several unidentified phospholipids. The predominant cellular fatty acids were C16:0, iso-C16:0 and summed feature 3 (C16:1ω7c/C16:1ω6c). The genome size of strain SSL-25T was 8.1 Mbp with a G+C content of 71.5 mol%. Phylogenetic analysis indicated that strain SSL-25T is closely related to Streptomyces tsukubensis NRRL 18488T (99.4 % sequence similarity). However, the digital DNA–DNA hybridization (39.8 %) and average nucleotide identity (91.3 %) values between them showed that it represents a distinct species. Furthermore, the results of morphological, physiological and biochemical tests allowed further phenotypic differentiation of strain SSL-25T from S. tsukubensis NRRL 18488T. Therefore, based on these results, it is concluded that strain SSL-25T represents a novel Streptomyces species, for which the name Streptomyces qinzhouensis sp. nov. is proposed. The type strain is SSL-25T (=CICC 11054T=JCM33585T).
-
-
-
Saccharothrix deserti sp. nov., an actinomycete isolated from desert soil
More LessA Gram-stain-positive, aerobic actinomycete, designated strain BMP B8144T, was isolated from desert soil, in Xinjiang province, northwest China. The isolate produced scanty aerial mycelium and fragmented substrate mycelium on most tested media. Cell-wall hydrolysates contained meso-diaminopimelic acid, galactose and mannose. The diagnostic phospholipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylhydroxylethanolamine, phosphatidylinositol, and phosphatidylinositol mannosides. The major fatty acids included iso-C16 : 0, C17 : 1 ω8c and iso-C15 : 0. The predominant menaquinones were MK-9(H4) and MK-10(H4). The DNA G+C content was 70.4 mol% (genome). Based on the 16S rRNA gene sequence analysis on EzBioCloud server, strain BMP B8144T showed the closest similarities to Saccharothrix lopnurensis YIM LPA2hT (98.9 %) and ‘ Saccharothrix yanglingensis ’ Hhs.015 (98.6 %). However, it can be distinguished from the closest strains based on the low levels of DNA–DNA relatedness (59.3±1.8 and 47.9±2.3 %, respectively). A combination of morphological, chemotaxonomic and phylogenetic characteristics, strain BMP B8144T represents a novel species of the genus Saccharothrix , for which the name Saccharothrix deserti sp. nov. is proposed. The type strain is BMP B8144T (=CGMCC 4.7490T=KCTC 49001T).
-
-
-
Nesterenkonia muleiensis sp. nov., a novel actinobacterium isolated from sap of Populus euphratica
A novel, Gram-stain-positive, aerobic, non-endospore-forming, non-motile and rod-shaped bacterium designated RB2T was isolated from sap of Populus euphratica collected in Mulei county, Xinjiang province, PR China. RB2T was able to grow at 10–45 °C (optimum 35 °C), pH 6.0–12.0 (optimum 8.0) and with 0–12 % (w/v) NaCl (optimum 1 %). The genomic DNA G+C content was 63.5 % (from the genome sequence). The results of the chemotaxonomic analysis indicated that the predominant isoprenoid quinones were MK-8 and MK-9. The major fatty acids were anteiso-C15 : 0 and anteiso-C17 : 0. The major polar lipids of RB2T were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol and two glycolipids. The peptidoglycan type of RB2T was A4α, l-Lys–Gly–l-Glu. The results of the phylogenetic analysis, along with the phenotypic and chemotaxonomic characteristics, indicate that strain RB2T represents a novel species of the genus Nesterenkonia , for which the name Nesterenkonia muleiensis sp. nov. is proposed. The type strain is RB2T (=MCCC 1K03528T=KCTC 49017T).
-
-
-
Corynebacterium suranareeae sp. nov., a glutamate producing bacterium isolated from soil and its complete genome-based analysis
Strain N24T was isolated from soil contaminated with starling’s feces collected from Roi-Et province, Thailand. Cells of N24T were Gram-stain-positive rods, aerobic and non-spore-forming. N24T was positive for catalase, urease, citrate utilization, nitrate reduction and Methyl Red (MR) test but negative for oxidase, casein, gelatin liquefaction, tyrosine, Voges–Proskauer (VP) reaction and starch hydrolysis. Meso-diaminopimelic acid, rhamnose, ribose, arabinose and galactose were detected in its whole-cell hydrolysates. The results of the 16S rRNA gene sequence analysis indicated that N24T represented a member of the genus Corynebacterium . N24T was closely related to Corynebacterium glutamicum ATCC 13032T, with 99.0 % 16S rRNA gene sequence similarity. According to results obtained using in silico DNA–DNA hybridization approaches, N24T showed highest DNA–DNA relatedness (27.6 %) and average nucleotide identity (84.1 %) to Corynebacterium glutamicum ATCC 13032T. The DNA G+C content of N24T was 51.8 mol% (genome based). The major cellular fatty acids of N24T were C16 : 0, and C18 : 1ω9c. N24T had the nine isoprenes unit, MK-9(H2) as the predominant menaquinone. The predominant polar lipids were phosphatidylglycerol, phosphatidylinositol and diphosphatidylglycerol. Mycolic acids were also present. According to the complete genome sequence data, strain N24T and C. glutamicum ATCC 13032T are close phylogenetic neighbours, but have different genome characteristics. On the basis of the results of the genotypic and genomic studies and phenotypic characteristics including chemotaxonomy, strain N24T should be classified as representing a novel species of the genus Corynebacterium , for which the name Corynebacterium suranareeae sp. nov. is proposed. The type strain is N24T (TBRC 5845T=NBRC 113465T).
-
-
-
Streptomyces aquilus sp. nov., a novel actinomycete isolated from a Chinese medicinal plant
More LessThe taxonomic position of a novel actinomycete isolate, designated strain GGCR-6T, isolated from the healthy leaves of Xanthium sibiricum collected from the botanic garden of Hunan University of Science and Technology in Hunan province, PR China, was determined by a polyphasic approach. GGCR-6T grew well on ISP series media and formed well-developed, branched substrate hyphae and aerial mycelium that differentiated into straight spore chains consisting of cylindrical spores with smooth surfaces. The diagnostic diamino acid was ll-diaminopimelic acid. The major menaquinones were MK-9(H8), MK-9(H2), MK-9 and MK-9(H6). The polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphotidylinositol and phosphatidylinositol mannosides. The predominant fatty acids were C16 : 1ω9c, iso-C16 : 0 and C16 : 0. The phenotypic characteristics of GGCR-6T indicated that it represented a member of the genus Streptomyces . Phylogenetic analysis based on the 16S rRNA gene sequence indicated that GGCR-6T was most closely related to Streptomyces cyaneus NRRL B2296T and Streptomyces griseoruber NRRL B1818T. However, the digital DNA–DNA hybridization, the average nucleotide identity and the multi locus sequence analysis evolutionary distance clearly separate GGCR-6T from the phylogenetically closely related species. Furthermore, the novel isolate was distinctly differentiated from S. cyaneus NRRL B2296T and S. griseoruber NRRL B1818T by morphological, physiological and biochemical characteristics. Based on these data, strain GGCR-6T should be designated as a representative of a novel species of the genus Streptomyces , for which the name Streptomyces aquilus sp. nov. is proposed. The type strain is strain GGCR-6T (=CICC 11055T=JCM 33584T).
-
-
-
Cryobacterium ruanii sp. nov. and Cryobacterium breve sp. nov., isolated from glaciers
More LessStrains Sr36T and TMT4-23T were isolated from No. 1 glacier in Xinjiang Uygur Autonomous Region and Toumingmengke glacier in Gansu Province, PR China, respectively. They were Gram-stain-positive and rod-shaped micro-organisms. The optimum growth temperature of the two strains was 10–14 °C. Phylogenetic analysis showed that the two strains were related to members of the genus Cryobacterium . The average nucleotide identity (ANI) and digital DNA–DNA hybridization (dDDH) values between strain Sr36T and its close relatives Cryobacterium luteum Hh15T, Cryobacterium aureum Hh31T, Cryobacterium levicorallinum Hh34T and Cryobacterium flavum Hh8T were 81.16–87.24 and 28.0–32.5 %, respectively. The ANI and dDDH values between strain TMT4-23T and its close relative Cryobacterium psychrotolerans 0549T were 81.16 and 22.3 %. The polar lipids of strain Sr36T were diphosphatidylglycerol, phosphatidylglycerol, one unidentified glycolipid and three unidentified lipids. The polar lipids of strain TMT4-23T were diphosphatidylglycerol, phosphatidylglycerol, one unidentified glycolipid, one unidentified phospholipid and six unidentified lipids. The major fatty acids of strain Sr36T were anteiso-C15 : 0, iso-C16 : 0, anteiso-C17 : 0 and anteiso-C15 : 1. The major fatty acids of strain TMT4-23T were anteiso-C15 : 0, anteiso-C17 : 0, iso-C16 : 0, anteiso-C15 : 1 and iso-C15 : 1. Both strains contained 2,4-diaminobutyric acid and their predominant menaquinone was MK-10. On the basis of the phenotypic, phylogenetic and genotypic data, two novel species Cryobacterium ruanii sp. nov. (type strain = Sr36T=CGMCC 1.9275T=NBRC 113797T) and Cryobacterium breve sp. nov. (type strain =TMT4-23T=CGMCC 1.9556T=NBRC 113800T) are proposed.
-
-
-
Xylanimonas allomyrinae sp. nov. isolated from the gut of larva of Allomyrina dichotoma, reclassification of Xylanibacterium ulmi as Xylanimonas ulmi comb. nov. and Xylanimicrobium pachnodae as Xylanimonas pachnodae comb. nov., and emendation of the genus Xylanimonas
A bacterium that was Gram-staining-positive, facultatively anaerobic, non-motile, rod- or filamentous-shaped, designated as strain 2JSPR-7T, was isolated from a gut of larvae of Allomyrina dichotoma which were raised at the National Institute of Agricultural Sciences, Wanju-gun, Republic of Korea. 2JSPR-7T had the highest 16S rRNA gene sequence similarity to Xylanibacterium ulmi XIL08T (98.1 %), Xylanimicrobium pachnodae NBRC 107786T (97.8 %) and Xylanimonas cellulosilytica DSM 15894T (97.5 %). Optimum growth conditions were at 28–30 °C, pH 7–8 and 0 % salt concentration. The cellular fatty acids mainly consisted of anteiso-C15 : 0, C14 : 0 and C16 : 0. The polar lipids were diphosphatidylglycerol, four unidentified phospholipids and two unidentified glycophospholipids. The major menaquinones were MK-8(H4) and MK-9(H4). The peptidoglycan structure was suggested to be the type A3α (A11.14) l-Lys–l-Ser with the presence of d-Ala, l-Ala, d-Glu, l-Ser and l-Lys. Whole cell sugars were rhamnose, ribose and glucose. The DNA G+C content was 72.7 mol%. We encountered difficulty in selecting a suitable genus to accommodate strain 2JSPR-7T from any of the genera Xylanimonas , Xylanimicrobium and Xylanibacterium based on the polyphasic approach including phylogenetic and phenotypic characterization. Therefore, it is proposed to combine the genera Xylanimicrobium and Xylanibacterium with the genus Xylanimonas considering the priority of publication and to classify strain 2JSPR-7T in the genus as Xylanimonas allomyrinae sp. nov. The type strain of the novel species is 2JSPR-7T (=KACC 19330T=NBRC 113052T). In addition, the description of the genus Xylanimonas is emended, and Xylanibacterium ulmi and Xylanimicrobium pachnodae are reclassified as Xylanimonas ulmi comb. nov. and Xylanimonas pachnodae comb. nov., respectively.
-
-
-
Arthrobacter ulcerisalmonis sp. nov., isolated from an ulcer of a farmed Atlantic salmon (Salmo salar), and emended description of the genus Arthrobacter sensu lato
A Gram-stain positive, pleomorphic, oxidase-negative, non-motile isolate from the ulcer of a farmed Atlantic salmon (Salmo salar), designated strain T11bT, was subjected to a comprehensive taxonomic investigation. A comparative analysis of the 16S rRNA gene sequence showed highest similarities to the type strains of Pseudarthrobacter siccitolerans (98.1 %) and Arthrobacter methylotrophus and Pseudarthrobacter phenanthrenivorans (both 98.0 %). The highest ANI value observed between the assembled genome of T11bT and the publicly available Pseudarthrobacter and Arthrobacter type strain genomes were 81.15 and 80.99 %, respectively. The major respiratory quinone was menaquinone MK-9(H2). The polyamine pattern contained predominantly spermidine. The polar lipid profile consisted of the major lipids diphosphatidylglycerol, phosphatidylglycerol, monogalactosyl-diacylglycerol and dimannosylglyceride. Minor amouts of trimannosyldiacylglycerol and phosphatidylinositol were also detected. The peptidoglycan was of the type A3α l-Lys–l-Ser–l-Thr–l-Ala (A11.23). In the fatty acid profile, anteiso and iso branched fatty acids predominated (anteiso C15 : 0, iso C16 : 0, anteiso C17 : 0). Moderate to low DNA–DNA similarities, physiological traits as well as unique traits in the fatty acid pattern distinguished strain T11bT from the next related species. All these data point to the fact that strain T11bT represents a novel species of the genus Arthrobacter for which we propose the name Arthrobacter ulcerisalmonis sp. nov. The type strain is T11bT (=CIP 111621T=CCM 8854T=LMG 30632T=DSM 107127T).
-
-
-
Genome-based classification of three novel actinobacteria from the Karakum Desert: Jiangella asiatica sp. nov., Jiangella aurantiaca sp. nov. and Jiangella ureilytica sp. nov
More LessThree isolates, 5K138T, 8K307T and KC603T, with typical morphological characteristics of members of the genus Jiangella were obtained during a study searching for novel actinobacteria with biosynthetic potential from the Karakum Desert. A polyphasic approach was adopted to determine taxonomic affiliations of the strains. The strains showed chemotaxonomic properties consistent with their classification as representing members of the genus Jiangella such as ll-diaminopimelic acid in the cell wall peptidoglycan, diphosphatidylglycerol, phosphatidylglycerol and phosphatidylinositol as major polar lipids as well as MK-9(H4) as a major menaquinone. Pairwise sequence comparisons of the 16S rRNA genes showed that the strains were closely related to Jiangella alba DSM 45237T, Jiangella rhizosphaerae NEAU-YY265T and Jiangella mangrovi 3SM4-07T with higher than 99 % sequence identities. However, a combination of phenotypic and phylogenetic approaches as well as genome-based comparative analyses confirmed the taxonomic positions of these strains as representing distinct species within the genus Jiangella . Therefore, strains 5K138T, 8K307T and KC603T should each be classified as representing a novel species within the genus Jiangella , for which the names Jiangella asiatica sp. nov., Jiangella aurantiaca sp. nov. and Jiangella ureilytica sp. nov. are proposed, respectively. The type strains of the proposed novel species are as follows: Jiangella asiatica 5K138T (=JCM 33518T=CGMCC 4.7672T), Jiangella aurantiaca 8K307T (=JCM 33519T=CGMCC 4.7621T) and Jiangella ureilytica KC603T (=JCM 33520T=CGMCC 4.7618T).
-
-
-
Lysinimonas yzui sp. nov., isolated from cattail root soil from mine tailings
More LessA yellow-pigmented, Gram-stain-negative, aerobic, non-motile rod shaped, mesophilic bacterium, designated strain N7XX-4T, was isolated from cattail root grown on the mine tailings of Phoenix mountain, Tongling city, Anhui Province (PR China). Analysis of the 16S rRNA gene sequence revealed that the strain represented a novel member of the family Microbacteriaceae . The nearest phylogenetic neighbour was Lysinimonas kribbensis MSL-13T (97.8 % 16S rRNA gene sequence similarity). The most abundant fatty acid in whole cells of N7XX-4T was anteiso-C15 : 0 (29.9 %). The predominant menaquinones were MK-12(H2), MK-13(H2) and MK-11(H2). The peptidoglycan type of the isolate was B1δ with l-Lys as the diagnostic cell-wall diamino acid. On the basis of differences in phenotypic and genotypic characteristics, strain N7XX-4T (=CGMCC 1.16548T=DSM 106791T=JCM 32630T) is designated as the type strain of a novel species of the genus Lysinimonas , for which the name Lysinimonas yzui sp. nov. is proposed.
-
Volumes and issues
-
Volume 74 (2024)
-
Volume 73 (2023)
-
Volume 72 (2022 - 2023)
-
Volume 71 (2020 - 2021)
-
Volume 70 (2020)
-
Volume 69 (2019)
-
Volume 68 (2018)
-
Volume 67 (2017)
-
Volume 66 (2016)
-
Volume 65 (2015)
-
Volume 64 (2014)
-
Volume 63 (2013)
-
Volume 62 (2012)
-
Volume 61 (2011)
-
Volume 60 (2010)
-
Volume 59 (2009)
-
Volume 58 (2008)
-
Volume 57 (2007)
-
Volume 56 (2006)
-
Volume 55 (2005)
-
Volume 54 (2004)
-
Volume 53 (2003)
-
Volume 52 (2002)
-
Volume 51 (2001)
-
Volume 50 (2000)
-
Volume 49 (1999)
-
Volume 48 (1998)
-
Volume 47 (1997)
-
Volume 46 (1996)
-
Volume 45 (1995)
-
Volume 44 (1994)
-
Volume 43 (1993)
-
Volume 42 (1992)
-
Volume 41 (1991)
-
Volume 40 (1990)
-
Volume 39 (1989)
-
Volume 38 (1988)
-
Volume 37 (1987)
-
Volume 36 (1986)
-
Volume 35 (1985)
-
Volume 34 (1984)
-
Volume 33 (1983)
-
Volume 32 (1982)
-
Volume 31 (1981)
-
Volume 30 (1980)
-
Volume 29 (1979)
-
Volume 28 (1978)
-
Volume 27 (1977)
-
Volume 26 (1976)
-
Volume 25 (1975)
-
Volume 24 (1974)
-
Volume 23 (1973)
-
Volume 22 (1972)
-
Volume 21 (1971)
-
Volume 20 (1970)
-
Volume 19 (1969)
-
Volume 18 (1968)
-
Volume 17 (1967)
-
Volume 16 (1966)
-
Volume 15 (1965)
-
Volume 14 (1964)
-
Volume 13 (1963)
-
Volume 12 (1962)
-
Volume 11 (1961)
-
Volume 10 (1960)
-
Volume 9 (1959)
-
Volume 8 (1958)
-
Volume 7 (1957)
-
Volume 6 (1956)
-
Volume 5 (1955)
-
Volume 4 (1954)
-
Volume 3 (1953)
-
Volume 2 (1952)
-
Volume 1 (1951)