1887

Abstract

Two strains of the family were isolated from the rhizosphere of the medicinal plant . Cells of both strains were Gram-stain-negative, motile by means of a single polar flagellum, non-spore-forming, non-capsulated, short rods that divided by binary fission. Colonies were small and white. Strains R5913 and R5959 were oxidase-positive, mesophilic, neutrophilic and grew optimally without NaCl. Both grew under aerobic and microaerophilic conditions and on a limited range of substrates with best results on yeast extract. Major fatty acids were C cyclo 8 and C; in addition, Cω7 was also found as a predominant fatty acid in strain R5913. The major respiratory quinone was ubiquinone 10 (Q-10). The DNA G+C contents of strains R5913 and R5959 were 66.0 and 67.4 mol%, respectively. 16S rRNA gene sequence comparison revealed that the closest relatives (<92 % similarity) of the strains are MCCC 1A02656, CGMCC 1.7660, D78 and 04SU4-P. The two novel strains shared 98.6 % sequence similarity and represent different species on the basis of low average nucleotide identity of their genomes (83.8 %). Based on the combined phenotypic, genomic and phylogenetic investigations, the two strains represent two novel species of a new genus in the family , for which the name gen. nov. is proposed, comprising the type species sp. nov. (type strain R5913=DSM 109816=CECT 9472) and sp. nov. (type strain R5959=DSM 109817=CECT 9620).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003983
2020-01-20
2020-02-26
Loading full text...

Full text loading...

References

  1. Pfennig N, Trüper HG. Higher taxa of the phototrophic bacteria. Int J Syst Bacteriol 1971;21:17–18 [CrossRef]
    [Google Scholar]
  2. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef]
    [Google Scholar]
  3. Parte C. 2018; LPSN (List of Prokaryotic Names with Standing Nomenclature). www.bacterio.net
  4. Leibniz Institute DSMZ German collection of microorganisms and cell cultures, Germany. March. Prokaryotic Nomenclature Up-to-date 2019
    [Google Scholar]
  5. Chen M-H, Zhou X-Y, Ou F-H, Xia F, Lv Y-Y et al. Aliidongia dinghuensis gen. nov., sp. nov., a poly-β-hydroxybutyrate-producing bacterium isolated from Pinus massoniana forest soil. Int J Syst Evol Microbiol 2017;67:212–217 [CrossRef]
    [Google Scholar]
  6. Lin S-Y, Liu Y-C, Hameed A, Hsu Y-H, Huang H-I et al. Azospirillum agricola sp. nov., a nitrogen-fixing species isolated from cultivated soil. Int J Syst Evol Microbiol 2016;66:1453–1458 [CrossRef]
    [Google Scholar]
  7. Kim D-U, Lee H, Kim H, Kim S-G, Ka J-O et al. Dongia soli sp. nov., isolated from soil from Dokdo, Korea. Antonie van Leeuwenhoek 2016;109:1397–1402 [CrossRef]
    [Google Scholar]
  8. Subhash Y, Lee S-S. Skermanella rosea sp. nov., isolated from hydrocarbon-contaminated desert sands. Int J Syst Evol Microbiol 2016;66:3951–3956 [CrossRef]
    [Google Scholar]
  9. Sheu S-Y, Chen Y-L, Young C-C, Chen W-M. Lacibacterium aquatile gen. nov., sp. nov., a new member of the family Rhodospirillaceae isolated from a freshwater lake. Int J Syst Evol Microbiol 2013;63:4797–4804 [CrossRef]
    [Google Scholar]
  10. Dar Jean W, Huang S-P, Chen J-S, Shieh WY, Jean WD. Tagaea marina gen. nov., sp. nov., a marine bacterium isolated from shallow coastal water. Int J Syst Evol Microbiol 2016;66:592–597 [CrossRef]
    [Google Scholar]
  11. Rahalkar M, Bahulikar RA, Deutzmann JS, Kroth PG, Schink B. Elstera litoralis gen. nov., sp. nov., isolated from stone biofilms of lake Constance, Germany. Int J Syst Evol Microbiol 2012;62:1750–1754 [CrossRef]
    [Google Scholar]
  12. Williams TJ, Lefèvre CT, Zhao W, Beveridge TJ, Bazylinski DA. Magnetospira thiophila gen. nov., sp. nov., a marine magnetotactic bacterium that represents a novel lineage within the Rhodospirillaceae (Alphaproteobacteria). Int J Syst Evol Microbiol 2012;62:2443–2450 [CrossRef]
    [Google Scholar]
  13. Bazylinski DA, Williams TJ, Lefèvre CT, Trubitsyn D, Fang J et al. Magnetovibrio blakemorei gen. nov., sp. nov., a magnetotactic bacterium (Alphaproteobacteria: Rhodospirillaceae) isolated from a salt marsh. Int J Syst Evol Microbiol 2013;63:1824–1833 [CrossRef]
    [Google Scholar]
  14. Yamada K, Fukuda W, Kondo Y, Miyoshi Y, Atomi H et al. Constrictibacter antarcticus gen. nov., sp. nov., a cryptoendolithic micro-organism from Antarctic white rock. Int J Syst Evol Microbiol 2011;61:1973–1980 [CrossRef]
    [Google Scholar]
  15. Yoon J-H, Kang S-J, Park S, Oh T-K. Caenispirillum bisanense gen. nov., sp. nov., isolated from sludge of a dye works. Int J Syst Evol Microbiol 2007;57:1217–1221 [CrossRef]
    [Google Scholar]
  16. Dong C, Lai Q, Chen L, Sun F, Shao Z et al. Oceanibaculum pacificum sp. nov., isolated from hydrothermal field sediment of the south-west Pacific Ocean. Int J Syst Evol Microbiol 2010;60:219–222 [CrossRef]
    [Google Scholar]
  17. Rizzo P, Altschmied L, Stark P, Rutten T, Gündel A et al. Discovery of key regulators of dark gland development and hypericin biosynthesis in St. John's wort (Hypericum perforatum). Plant Biotechnol J 2019;17:22992312 [CrossRef]
    [Google Scholar]
  18. Wurglics M, Schubert-Zsilavecz M. Hypericum perforatum: a 'modern' herbal antidepressant: pharmacokinetics of active ingredients. Clin Pharmacokinet 2006;45:449–468 [CrossRef]
    [Google Scholar]
  19. Huber KJ, Wüst PK, Rohde M, Overmann J, Foesel BU. Aridibacter famidurans gen. nov., sp. nov. and Aridibacter kavangonensis sp. nov., two novel members of subdivision 4 of the Acidobacteria isolated from semiarid savannah soil. Int J Syst Evol Microbiol 2014;64:1866–1875 [CrossRef]
    [Google Scholar]
  20. Lunau M, Lemke A, Walther K, Martens-Habbena W, Simon M. An improved method for counting bacteria from sediments and turbid environments by epifluorescence microscopy. Environ Microbiol 2005;7:961–968 [CrossRef]
    [Google Scholar]
  21. Angle JS, McGrath SP, Chaney RL. New culture medium containing ionic concentrations of nutrients similar to concentrations found in the soil solution. Appl Environ Microbiol 1991;57:3674–3676
    [Google Scholar]
  22. Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS. Methanogens: reevaluation of a unique biological group. Microbiol Rev 1979;43:260–269
    [Google Scholar]
  23. Tschech A, Pfennig N. Growth yield increase linked to caffeate reduction in Acetobacterium woodii. Arch Microbiol 1984;137:163–167 [CrossRef]
    [Google Scholar]
  24. Huber KJ, Geppert AM, Wanner G, Fösel BU, Wüst PK et al. The first representative of the globally widespread subdivision 6 Acidobacteria,Vicinamibacter silvestris gen. nov., sp. nov., isolated from subtropical savannah soil. Int J Syst Evol Microbiol 2016;66:2971–2979 [CrossRef]
    [Google Scholar]
  25. Vieira S, Luckner M, Wanner G, Overmann J. Luteitalea pratensis gen. nov., sp. nov. a new member of subdivision 6 Acidobacteria isolated from temperate grassland soil. Int J Syst Evol Microbiol 2017;67:1408–1414 [CrossRef]
    [Google Scholar]
  26. Camarinha-Silva A, Jáuregui R, Chaves-Moreno D, Oxley APA, Schaumburg F et al. Comparing the anterior NarE bacterial community of two discrete human populations using illumina amplicon sequencing. Environ Microbiol 2014;16:2939–2952 [CrossRef]
    [Google Scholar]
  27. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T et al. The Silva ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 2013;41:D590–D596 [CrossRef]
    [Google Scholar]
  28. Edgar RC. Search and clustering orders of magnitude faster than blast. Bioinformatics 2010;26:2460–2461 [CrossRef]
    [Google Scholar]
  29. Pascual J, Wüst PK, Geppert A, Foesel BU, Huber KJ et al. Novel isolates double the number of chemotrophic species and allow the first description of higher taxa in Acidobacteria subdivision 4. Syst Appl Microbiol 2015;38:534–544 [CrossRef]
    [Google Scholar]
  30. Pascual J, Wüst PK, Geppert A, Foesel BU, Huber KJ et al. Terriglobus albidus sp. nov., a member of the family Acidobacteriaceae isolated from Namibian semiarid savannah soil. Int J Syst Evol Microbiol 2015;65:3297–3304 [CrossRef]
    [Google Scholar]
  31. Vasilyeva LV. Stella, a new genus of soil prosthecobacteria, with proposals for Stella humosa sp. nov. and Stella vacuolata sp. nov. Int J Syst Bacteriol 1985;35:518–521 [CrossRef]
    [Google Scholar]
  32. Taylor WI, Achanzar D. Catalase test as an aid to the identification of Enterobacteriaceae. Appl Microbiol 1972;24:58–61
    [Google Scholar]
  33. Foesel BU, Rohde M, Overmann J. Blastocatella fastidiosa gen. nov., sp. nov., isolated from semiarid savanna soil - the first described species of Acidobacteria subdivision 4. Syst Appl Microbiol 2013;36:82–89 [CrossRef]
    [Google Scholar]
  34. Liu Y, Jin J-H, Liu Y-H, Zhou Y-G, Liu Z-P. Dongia mobilis gen. nov., sp. nov., a new member of the family Rhodospirillaceae isolated from a sequencing batch reactor for treatment of malachite green effluent. Int J Syst Evol Microbiol 2010;60:2780–2785 [CrossRef]
    [Google Scholar]
  35. Baik KS, Hwang YM, Choi J-S, Kwon J, Seong CN. Dongia rigui sp. nov., isolated from freshwater of a large wetland in Korea. Antonie van Leeuwenhoek 2013;104:1143–1150 [CrossRef]
    [Google Scholar]
  36. Lai Q, Yuan J, Wu C, Shao Z. Oceanibaculum indicum gen. nov., sp. nov., isolated from deep seawater of the Indian Ocean. Int J Syst Evol Microbiol 2009;59:1733–1737 [CrossRef]
    [Google Scholar]
  37. Pagnier I, Raoult D, La Scola B. Isolation and characterization of Reyranella massiliensis gen. nov., sp. nov. from freshwater samples by using an amoeba co-culture procedure. Int J Syst Evol Microbiol 2011;61:2151–2154 [CrossRef]
    [Google Scholar]
  38. Kim S-J, Ahn J-H, Lee T-H, Weon H-Y, Hong S-B et al. Reyranella soli sp. nov., isolated from forest soil, and emended description of the genus Reyranella Pagnier et al. 2011. Int J Syst Evol Microbiol 2013;63:3164–3167 [CrossRef]
    [Google Scholar]
  39. Lee J-C, Whang K-S. Reyranella graminifolii sp. nov., isolated from bamboo (Phyllostachys bambusoides) litter. Int J Syst Evol Microbiol 2014;64:2503–2507 [CrossRef]
    [Google Scholar]
  40. Lee H, Kim D-U, Lee S, Park S, Yoon J-H et al. Reyranella terrae sp. nov., isolated from an agricultural soil, and emended description of the genus Reyranella. Int J Syst Evol Microbiol 2017;67:2031–2035 [CrossRef]
    [Google Scholar]
  41. Cui Y, Chun S-J, Ko S-R, Lee H-G, Srivastava A et al. Reyranella aquatilis sp. nov., an alphaproteobacterium isolated from a eutrophic lake. Int J Syst Evol Microbiol 2017;67:3496–3500 [CrossRef]
    [Google Scholar]
  42. Cai H, Zeng Y, Wang Y, Jiang H. Elstera cyanobacteriorum sp. nov., a novel bacterium isolated from cyanobacterial aggregates in a eutrophic lake. Int J Syst Evol Microbiol 2017;67:4272–4275 [CrossRef]
    [Google Scholar]
  43. Du Y, Liu X, Lai Q, Li W, Sun F et al. Oceanibaculum nanhaiense sp. nov., isolated from surface seawater. Int J Syst Evol Microbiol 2017;67:4842–4845 [CrossRef]
    [Google Scholar]
  44. Urios L, Michotey V, Intertaglia L, Lesongeur F, Lebaron P. Nisaea denitrificans gen. nov., sp. nov. and Nisaea nitritireducens sp. nov., two novel members of the class Alphaproteobacteria from the Mediterranean sea. Int J Syst Evol Microbiol 2008;58:2336–2341 [CrossRef]
    [Google Scholar]
  45. Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA. (editors) Manual of Methods for General Bacteriology Washington, DC: American Society for Microbiology; 1981
    [Google Scholar]
  46. Zhang D, Yang H, Zhang W, Huang Z, Liu SJ. Rhodocista pekingensis sp. nov., a cyst-forming phototrophic bacterium from a municipal wastewater treatment plant. Int J Syst Evol Microbiol 2003;53:1111–1114 [CrossRef]
    [Google Scholar]
  47. Lakshmi KVNS, Sasikala C, Ashok Kumar GV, Chandrasekaran R, Ramana CV. Phaeovibrio sulfidiphilus gen. nov., sp. nov., phototrophic alphaproteobacteria isolated from brackish water. Int J Syst Evol Microbiol 2011;61:828–833 [CrossRef]
    [Google Scholar]
  48. Imhoff JF, Petri R, Süling J. Reclassification of species of the spiral-shaped phototrophic purple non-sulfur bacteria of the -Proteobacteria: description of the new genera Phaeospirillum gen. nov., Rhodovibrio gen. nov., Rhodothalassium gen. nov. and Roseospira gen. nov. as well as transfer of Rhodospirillum fulvum to Phaeospirillum fulvum comb. nov., of Rhodospirillum molischianum to Phaeospirillum molischianum comb. nov., of Rhodospirillum salinarum to Rhodovibrio salinarum comb, nov., of Rhodospirillum sodomense to Rhodovibrio sodomensis comb. nov., of Rhodospirillum salexigens to Rhodothalassium salexigens comb. nov. and of Rhodospirillum mediosalinum to Roseospira mediosalina comb. nov. Int J Syst Bacteriol 1998;48:793–798 [CrossRef]
    [Google Scholar]
  49. Anil Kumar P, Srinivas TNR, Takaichi S, Maoka T, Sasikala C et al. Phaeospirillum chandramohanii sp. nov., a phototrophic alphaproteobacterium with carotenoid glycosides. Int J Syst Evol Microbiol 2009;59:2089–2093 [CrossRef]
    [Google Scholar]
  50. Lakshmi KVNS, Sasikala C, Takaichi S, Ramana CV, Ch S. Phaeospirillum oryzae sp. nov., a spheroplast-forming, phototrophic alphaproteobacterium from a paddy soil. Int J Syst Evol Microbiol 2011;61:1656–1661 [CrossRef]
    [Google Scholar]
  51. Shalem Raj P, Kalyana Chakravarthy S, Ramaprasad EVV, Ch S, ChV R. Phaeospirillum tilakii sp. nov., a phototrophic alphaproteobacterium isolated from aquatic sediments. Int J Syst Evol Microbiol 2012;62:1069–1074
    [Google Scholar]
  52. Zhang GI, Hwang CY, Cho BC. Thalassobaculum litoreum gen. nov., sp. nov., a member of the family Rhodospirillaceae isolated from coastal seawater. Int J Syst Evol Microbiol 2008;58:479–485 [CrossRef]
    [Google Scholar]
  53. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. 2001
    [Google Scholar]
  54. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959;37:911–917 [CrossRef]
    [Google Scholar]
  55. Tindall BJ.Phenotypic characterization and the principles of comparative systematics In Reddy CA, Beveridge TJ, Breznak JA, Marzluf G, Schmidt TM. (editors) Methods for General and Molecular Microbiology, 3rd ed. Washington, DC: American Society for Microbiology; 2007; pp330–393
    [Google Scholar]
  56. Collins MD, Jones D. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 1981;45:316–354
    [Google Scholar]
  57. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990;66:199–202 [CrossRef]
    [Google Scholar]
  58. Yamada K, Fukuda W, Kondo Y, Miyoshi Y, Atomi H et al. Constrictibacter antarcticus gen. nov., sp. nov., a cryptoendolithic micro-organism from Antarctic white rock. Int J Syst Evol Microbiol 2011;61:1973–1980 [CrossRef]
    [Google Scholar]
  59. Dziuba M, Koziaeva V, Grouzdev D, Burganskaya E, Baslerov R et al. Magnetospirillum caucaseum sp. nov., Magnetospirillum marisnigri sp. nov. and Magnetospirillum moscoviense sp. nov., freshwater magnetotactic bacteria isolated from three distinct geographical locations in European Russia. Int J Syst Evol Microbiol 2016;66:2069–2077 [CrossRef]
    [Google Scholar]
  60. Pruesse E, Peplies J, Glöckner FO. Sina: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012;28:1823–1829 [CrossRef]
    [Google Scholar]
  61. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef]
    [Google Scholar]
  62. Baym M, Kryazhimskiy S, Lieberman TD, Chung H, Desai MM et al. Inexpensive multiplexed library preparation for megabase-sized genomes. PLoS One 2015;10:e0128036 [CrossRef]
    [Google Scholar]
  63. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009;25:1754–1760 [CrossRef]
    [Google Scholar]
  64. Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res 2012;22:568–576 [CrossRef]
    [Google Scholar]
  65. Tanizawa Y, Fujisawa T, Nakamura Y. DFAST: a flexible prokaryotic genome annotation pipeline for faster genome publication. Bioinformatics 2018;34:1037–1039 [CrossRef]
    [Google Scholar]
  66. Yoon S-H, Ha S-min, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017;110:1281–1286 [CrossRef]
    [Google Scholar]
  67. SI N, Kim YO, Yoon SH, SM H, Baek I et al. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018;56:280–285
    [Google Scholar]
  68. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef]
    [Google Scholar]
  69. Tindall BJ, Busse H-J, Ludwig W, Rosselló-Móra R, Kämpfer P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 2010;60:249–266 [CrossRef]
    [Google Scholar]
  70. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009;106:19126–19131 [CrossRef]
    [Google Scholar]
  71. Urios L, Michotey V, Intertaglia L, Lesongeur F, Lebaron P. Thalassobaculum salexigens sp. nov., a new member of the family Rhodospirillaceae from the NW Mediterranean Sea, and emended description of the genus Thalassobaculum. Int J Syst Evol Microbiol 2010;60:209–213 [CrossRef]
    [Google Scholar]
  72. Su Y, Wang R, Sun C, Han S, Hu J et al. Thalassobaculum fulvum sp. nov., isolated from deep seawater. Int J Syst Evol Microbiol 2016;66:2186–2191 [CrossRef]
    [Google Scholar]
  73. Jung H-M, Lee J-S, Bae H-M, Yi T-H, Kim S-Y et al. Inquilinus ginsengisoli sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol 2011;61:201–204 [CrossRef]
    [Google Scholar]
  74. Coenye T, Goris J, Spilker T, Vandamme P, LiPuma JJ. Characterization of unusual bacteria isolated from respiratory secretions of cystic fibrosis patients and description of Inquilinus limosus gen. nov., sp. nov. J Clin Microbiol 2002;40:2062–2069 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003983
Loading
/content/journal/ijsem/10.1099/ijsem.0.003983
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error