1887

Abstract

A Gram-stain-negative, non-motile, coccoid-shaped, catalase- and oxidase-positive, non-denitrifying, neutrophilic bacterium designated as strain JC501 was isolated from an epiphytic rhizosphere of an orchid, , growing in the Western Ghats of India. Phylogenetic analyses based on the 16S rRNA gene sequence indicated that strain JC501 belonged to the genus and had the highest levels of sequence identity with KKL-A5 (98.9 %), WPAn02 (97.3 %) and other members of the genus (<97.3 %). Strain JC501 produced indole-3 acetic acid and other indole derivatives from tryptophan. The dominant respiratory quinone was Q-10 and the major fatty acid was Cω7/C ω6, with significant quantities of Cω9, C and C. The polar lipids of strain JC501 comprised phosphatidylglycerol, phosphatidylcholine, diphosphatidylglycerol, an unidentified glycolipid, two unidentified aminolipids, two unidentified lipids and four unidentified phospholipids. The genome of strain JC501 was 3.3 Mbp with G+C content of 69.4 mol%. For the resolution of the phylogenetic congruence of the novel strain, the phylogeny was also reconstructed with the sequences of eight housekeeping genes. Based on the results of phylogenetic analyses, low (<85.9 %) average nucleotide identity, digital DNA–DNA hybridization (<29.8 %), chemotaxonomic analysis and physiological properties, strain JC501 could not be classified into any of the recognized species of the genus . Strain JC501 represents a novel species, for which the name sp. nov. is proposed. The type strain is JC501 (=LMG 30532=NBRC 113644).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003962
2020-01-08
2020-01-24
Loading full text...

Full text loading...

References

  1. Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 2006;57:233–266 [CrossRef]
    [Google Scholar]
  2. Hayat R, Ali S, Amara U, Khalid R, Ahmed I. Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 2010;60:579–598 [CrossRef]
    [Google Scholar]
  3. Richardson AE, Barea J-M, McNeill AM, Prigent-Combaret C. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 2009;321:305–339 [CrossRef]
    [Google Scholar]
  4. Tsavkelova EA, Cherdyntseva TA, Netrusov AI. Bacteria associated with the roots of epiphytic orchids. Microbiology 2004;73:710–715 [CrossRef]
    [Google Scholar]
  5. Nieder J, Prosperí J, Michaloud G. Epiphytes and their contribution to canopy diversity. Plant Ecol 2001;153:51–63 [CrossRef]
    [Google Scholar]
  6. Adhikari YP, Fischer A, Fischer HS. Epiphytic orchids and their ecological niche under anthropogenic influence in central Himalayas, Nepal. J Mt Sci 2016;13:774–784 [CrossRef]
    [Google Scholar]
  7. Davis DH, Doudoroff M, Stanier RY, Mandel M. Proposal to reject the genus Hydrogenomonas: Taxonomic implications. Int J Syst Bacteriol 1969;19:375–390 [CrossRef]
    [Google Scholar]
  8. Sun X, Luo P, Li M. Paracoccus angustae sp. nov., isolated from soil. Int J Syst Evol Microbiol 2015;65:3469–3475 [CrossRef]
    [Google Scholar]
  9. Dastager SG, Deepa CK, Li W-J, Tang S-K, Pandey A. Paracoccus niistensis sp. nov., isolated from forest soil, India. Antonie van Leeuwenhoek 2011;99:501–506 [CrossRef]
    [Google Scholar]
  10. Jung Y-T, Park S, Lee J-S, Yoon J-H. Paracoccus lutimaris sp. nov., isolated from a tidal flat sediment. Int J Syst Evol Microbiol 2014;64:2763–2769 [CrossRef]
    [Google Scholar]
  11. Park S, Yoon SY, Jung Y-T, Won S-M, Park D-S et al. Paracoccus aestuariivivens sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2016;66:2992–2998 [CrossRef]
    [Google Scholar]
  12. Khan ST, Takaichi S, Harayama S. Paracoccus marinus sp. nov., an adonixanthin diglucoside-producing bacterium isolated from coastal seawater in Tokyo Bay. Int J Syst Evol Microbiol 2008;58:383–386 [CrossRef]
    [Google Scholar]
  13. Sheu S-Y, Hsieh T-Y, Young C-C, Chen W-M. Paracoccus fontiphilus sp. nov., isolated from a freshwater spring. Int J Syst Evol Microbiol 2018;68:2054–2060 [CrossRef]
    [Google Scholar]
  14. Lee M-J, Lee S-S. Paracoccus limosus sp. nov., isolated from activated sludge in a sewage treatment plant. Int J Syst Evol Microbiol 2013;63:1311–1316 [CrossRef]
    [Google Scholar]
  15. Sun L-N, Zhang J, Kwon S-W, He J, Zhou S-G et al. Paracoccus huijuniae sp. nov., an amide pesticide-degrading bacterium isolated from activated sludge of a wastewater biotreatment system. Int J Syst Evol Microbiol 2013;63:1132–1137 [CrossRef]
    [Google Scholar]
  16. Kim Y-O, Park I-S, Park S, Nam B-H, Kim D-G et al. Paracoccus alimentarius sp. nov., isolated from a Korean foodstuff, salted pollack. Int J Syst Evol Microbiol 2018;68:1238–1243 [CrossRef]
    [Google Scholar]
  17. McGinnis JM, Cole JA, Dickinson MC, Mingle LA, Lapierre P et al. Paracoccus sanguinis sp. nov., isolated from clinical specimens of New York State patients. Int J Syst Evol Microbiol 2015;65:1877–1882 [CrossRef]
    [Google Scholar]
  18. Zhang S, Gan L, Qin Q, Long X, Zhang Y et al. Paracoccus a cridae sp. nov., isolated from the insect Acrida cinerea living in deserted cropland. Int J Syst Evol Microbiol 2016;66:3492–3497 [CrossRef]
    [Google Scholar]
  19. Meng X-L, Ming H, Huang J-R, Zhang L-Y, Cheng L-J et al. Paracoccus halotolerans sp. nov., isolated from a salt lake. Int J Syst Evol Microbiol 2019;69:523–528 [CrossRef]
    [Google Scholar]
  20. Dong X, Zhang G, Xiong Q, Liu D, Wang D et al. Paracoccus salipaludis sp. nov., isolated from saline-alkaline soil. Int J Syst Evol Microbiol 2018;68:3812–3817 [CrossRef]
    [Google Scholar]
  21. Zhang H, Li Y-Q, Xiao M, Fang B-Z, Alkhalifah DHM et al. Description of Paracoccus endophyticus sp. nov., isolated from Gastrodia elata Blume. Int J Syst Evol Microbiol 2019;69:261–265 [CrossRef]
    [Google Scholar]
  22. Kämpfer P, Busse H-J, Galatis H, Criscuolo A, Clermont D et al. Paracoccus haematequi sp. nov., isolated from horse blood. Int J Syst Evol Microbiol 2019;69:1682–1688 [CrossRef]
    [Google Scholar]
  23. Kämpfer P, Irgang R, Poblete-Morales M, Fernández-Negrete G, Glaeser SP et al. Paracoccus nototheniae sp. nov., isolated from a black rock cod fish (Notothenia coriiceps) from the Chilean Antarctic. Int J Syst Evol Microbiol 2019;69:2794–2800 [CrossRef]
    [Google Scholar]
  24. Kim J, Kim JY, Song HS, Cha I-T, Roh SW et al. Paracoccus jeotgali sp. nov., isolated from Korean salted and fermented shrimp. J Microbiol 2019;57:444–449 [CrossRef]
    [Google Scholar]
  25. Lin D, Zhu S, Chen Y, Huang Y, Yang J et al. Paracoccus indicus sp. nov., isolated from surface seawater in the Indian Ocean. Antonie van Leeuwenhoek 2019;112:927–933 [CrossRef]
    [Google Scholar]
  26. Katayama Y, Hiraishi A, Kuraishi H. Paracoccus thiocyanatus sp. nov., a new species of thiocyanate-utilizing facultative chemolithotroph, and transfer of Thiobacillus versutus to the genus Paracoccus as Paracoccus versutus comb. nov. with emendation of the genus. Microbiology 1995;141:1469–1477 [CrossRef]
    [Google Scholar]
  27. Roh SW, Nam Y-D, Chang H-W, Kim K-H, Kim M-S et al. Paracoccus aestuarii sp. nov., isolated from tidal flat sediment. Int J Syst Evol Microbiol 2009;59:790–794 [CrossRef]
    [Google Scholar]
  28. Lakshmi KVNS, Sasikala C, Takaichi S, Ramana CV, Ch S. Phaeospirillum oryzae sp. nov., a spheroplast-forming, phototrophic alphaproteobacterium from a paddy soil. Int J Syst Evol Microbiol 2011;61:1656–1661 [CrossRef]
    [Google Scholar]
  29. Divyasree B, Suresh G, Sasikala C, Ramana CV. Chryseobacterium salipaludis sp. nov., isolated at a wild ass sanctuary. Int J Syst Evol Microbiol 2018;68:542–546 [CrossRef]
    [Google Scholar]
  30. Biebl H, Pfennig N.Isolation of members of the family Rhodospirillaceae In Starr MP, Stolp H, Truper HG, Balows A, Schlegel HG. (editors) The Prokaryotes: a Handbook on Habitats, Isolation and Identification of Bacteria1 1981; pp267–273
    [Google Scholar]
  31. Gandham S, Lodha T, Chintalapati S, Chintalapati VR, Ch S. Rhodobacter alkalitolerans sp. nov., isolated from an alkaline brown pond. Arch Microbiol 2018;200:1487–1492 [CrossRef]
    [Google Scholar]
  32. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef]
    [Google Scholar]
  33. Edgar RC. Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004;32:1792–1797 [CrossRef]
    [Google Scholar]
  34. Kumar S, Stecher G, Tamura K, Glen S, Koichiro T. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef]
    [Google Scholar]
  35. Posada D, Buckley TR. Model selection and model averaging in phylogenetics: advantages of akaike information criterion and Bayesian approaches over likelihood ratio tests. Syst Biol 2004;53:793–808 [CrossRef]
    [Google Scholar]
  36. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef]
    [Google Scholar]
  37. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef]
    [Google Scholar]
  38. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef]
    [Google Scholar]
  39. Rodriguez-R LM, Konstantinidis KT. The enveomics collection: a toolbox for 4specialized analyses of microbial genomes and metagenomes. Peer J Preprintse1900v1
    [Google Scholar]
  40. Auch AF, Klenk H-P, Göker M. Standard operating procedure for calculating genome-to-genome distances based on high-scoring segment pairs. Stand Genomic Sci 2010;2:142–148 [CrossRef]
    [Google Scholar]
  41. Rosselló-Móra R, Amann R. Past and future species definitions for bacteria and archaea. Syst Appl Microbiol 2015;38:209–216 [CrossRef]
    [Google Scholar]
  42. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009;106:19126–19131 [CrossRef]
    [Google Scholar]
  43. Wattam AR, Davis JJ, Assaf R, Boisvert S, Brettin T et al. Improvements to PATRIC, the all-bacterial bioinformatics database and analysis resource center. Nucleic Acids Res 2017;45:D535–D542 [CrossRef]
    [Google Scholar]
  44. Aurass P, Karste S, Trost E, Glaeser SP, Kämpfer P et al. Genome Sequence of Paracoccus contaminans LMG 29738T, Isolated from a Water Microcosm. Genome Announc 2017;5:e00487–17 [CrossRef]
    [Google Scholar]
  45. HF L, JH Q, Yang JS, ZJ L, Yuan HL. Paracoccus chinensis sp. nov., isolated from sediment of a reservoir. Int J Syst Bacteriol 2009;59:2670–2674
    [Google Scholar]
  46. Siller H, Rainey FA, Stackebrandt E, Winter J. Isolation and characterization of a new gram-negative, acetone-degrading, nitrate-reducing bacterium from soil, Paracoccus solventivorans sp. nov. Int J Syst Bacteriol 1996;46:1125–1130 [CrossRef]
    [Google Scholar]
  47. Lipski A, Reichert K, Reuter B, Sproer C, Altendorf K. Identification of bacterial isolates from biofilters as Paracoccus alkenifer sp. nov. and Paracoccus solventivorans with emended description of Paracoccus solventivorans. Int J Syst Bacteriol 1998;48:529–536 [CrossRef]
    [Google Scholar]
  48. Pan J, Sun C, Zhang X-Q, Huo Y-Y, Zhu X-F et al. Paracoccus sediminis sp. nov., isolated from Pacific Ocean marine sediment. Int J Syst Evol Microbiol 2014;64:2512–2516 [CrossRef]
    [Google Scholar]
  49. Glaeser SP, Kämpfer P. Multilocus sequence analysis (MLSA) in prokaryotic taxonomy. Syst Appl Microbiol 2015;38:237–245 [CrossRef]
    [Google Scholar]
  50. Gevers D, Cohan FM, Lawrence JG, Spratt BG, Coenye T et al. Opinion: Re-evaluating prokaryotic species. Nat Rev Microbiol 2005;3:733–739 [CrossRef]
    [Google Scholar]
  51. López-Hermoso C, de la Haba RR, Sánchez-Porro C, Papke RT, Ventosa A. Assessment of multilocus sequence analysis as a valuable tool for the classification of the genus Salinivibrio. Front Microbiol 2017;8:1107 [CrossRef]
    [Google Scholar]
  52. Liu Y, Lai Q, Göker M, Meier-Kolthoff JP, Wang M et al. Genomic insights into the taxonomic status of the Bacillus cereus group. Sci Rep 2015;5:14082 [CrossRef]
    [Google Scholar]
  53. Sailaja B, Suresh G, Deepshikha G, Sasikala C, Ramana C. Afifella aestuarii sp. nov., a phototrophic bacterium. Int J Syst Evol Microbiol in press 2019
    [Google Scholar]
  54. Liu Y, Lai Q, Shao Z. A multilocus sequence analysis scheme for phylogeny of Thioclava bacteria and proposal of two novel species. Front Microbiol 2017;8:1321 [CrossRef]
    [Google Scholar]
  55. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019;10:2182 [CrossRef]
    [Google Scholar]
  56. Zhang P, Jin T, Kumar Sahu S, Xu J, Shi Q et al. The distribution of tryptophan-dependent indole-3-acetic acid synthesis pathways in bacteria unraveled by large-scale genomic analysis. Molecules 2019;24:1411 [CrossRef]
    [Google Scholar]
  57. Eisenreich W, Bacher A, Arigoni D, Rohdich F. Biosynthesis of isoprenoids via the non-mevalonate pathway. CMLS, Cell. Mol. Life Sci. 2004;61:1401–1426 [CrossRef]
    [Google Scholar]
  58. Zhao L, Chang W-chen, Xiao Y, Liu H-wen, Liu P. Methylerythritol phosphate pathway of isoprenoid biosynthesis. Annu Rev Biochem 2013;82:497–530 [CrossRef]
    [Google Scholar]
  59. Smibert RM, Krieg NR.General characterization In Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA. (editors) Manual of Methods for General Microbiology24 Washington, DC: Am. Society Microbiol; 1981; pp409–443
    [Google Scholar]
  60. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  61. Kates M, Lipidology Tof.Isolation, analysis and identification of lipids Laboratory Techniques in Biochemistry and Molecular Biology2 Amsterdam: Burdon RH and van Knippenberg PH, Elsevier; 1986; pp100–112
    [Google Scholar]
  62. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990;66:199–202 [CrossRef]
    [Google Scholar]
  63. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990;13:128–130 [CrossRef]
    [Google Scholar]
  64. Oren A, Duker S, Ritter S. The polar lipid composition of Walsby's square bacterium. FEMS Microbiol Lett 1996;138:135–140 [CrossRef]
    [Google Scholar]
  65. Kates M, Lipidology Tin. Laboratory Techniques in Biochemistry and Molecular Biology2 American Elsevier Publishing Company 3: part: 1972; pp355–356
    [Google Scholar]
  66. Xie C-H, Yokota A. Phylogenetic analyses of Lampropedia hyalina based on the 16S rRNA gene sequence. J Gen Appl Microbiol 2003;49:345–349 [CrossRef]
    [Google Scholar]
  67. Deepshikha G, Mujahid M, Prasuna M, Ch S, Ch R. iTRAQ-based quantitative proteomics reveals insights into metabolic and molecular responses of glucose-grown cells of Rubrivivax benzoatilyticus JA2. J Prot 2019;194:49–59
    [Google Scholar]
  68. Welander PV, Hunter RC, Zhang L, Sessions AL, Summons RE et al. Hopanoids Play a Role in Membrane Integrity and pH Homeostasis in Rhodopseudomonas palustris TIE-1. J Bacteriol 2009;191:6145–6156 [CrossRef]
    [Google Scholar]
  69. Kleemann G, Kellner R, Poralla K. Purification and properties of the squalene-hopene cyclase from Rhodopseudomonas palustris, a purple non-sulfur bacterium producing hopanoids and tetrahymanol. Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism 1994;1210:317–320 [CrossRef]
    [Google Scholar]
  70. Singleton VL, Rossi JA. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J EnolVitic 1965;16:144–158
    [Google Scholar]
  71. Ehmann A. The Van URK-Salkowski reagent — a sensitive and specific chromogenic reagent for silica gel thin-layer chromatographic detection and identification of indole derivatives. J Chromatogr A 1977;132:267–276 [CrossRef]
    [Google Scholar]
  72. Mujahid M, Sasikala C, Ramana CV, Ch R V. Aniline-induced tryptophan production and identification of indole derivatives from three purple bacteria. Curr Microbiol 2010;61:285–290 [CrossRef]
    [Google Scholar]
  73. Mollan RC, Harmey MA, Donnelly DMX. Uv spectra of indoles in strong sulphuric acid. Phytochemistry 1973;12:447–450 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003962
Loading
/content/journal/ijsem/10.1099/ijsem.0.003962
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error