1887

Abstract

A novel actinobacterial strain, designated KGMB04484, was isolated from healthy human faeces sampled in the Republic of Korea. Cells of strain KGMB04484 were strictly anaerobic, Gram-stain-positive, catalase-positive, oxidase-negative, non-motile coccobacilli and formed tiny colonies on Columbia agar with 5 % horse blood. On the basis of 16S rRNA gene sequence similarity, strain KGMB04484 was affiliated with the genus in the family and its closest relative was JC110 (96.28 % sequence similarity). The DNA G+C content of strain KGMB04484 was 61.2 mol%. The polar lipids contained diphosphatidylglycerol, phosphatidylglycerol, an unidentified phospholipid, an unidentified aminolipid and three unidentified glycolipids. The predominant cellular fatty acids (>10 %) of strain KGMB04484 were C, C and C dimethyl acetal. Based on its phylogenetic, physiological and chemotaxonomic characteristics, strain KGMB04484 is considered to represent a novel species within the genus , for which the name sp. nov. is proposed. The type strain is KGMB04484 (=KCTC 15721=CCUG 72347).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003958
2020-01-08
2020-01-24
Loading full text...

Full text loading...

References

  1. Huse SM, Dethlefsen L, Huber JA, Welch DM, Relman DA et al. Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing. PLoS Genet 2008;4:e1000255 [CrossRef]
    [Google Scholar]
  2. Krajmalnik-Brown R, Ilhan Z-E, Kang D-W, DiBaise JK. Effects of gut microbes on nutrient absorption and energy regulation. Nutr Clin Pract 2012;27:201–214 [CrossRef]
    [Google Scholar]
  3. Ubeda C, Djukovic A, Isaac S. Roles of the intestinal microbiota in pathogen protection. Clin Transl Immunology 2017;6:e128 [CrossRef]
    [Google Scholar]
  4. Shibata N, Kunisawa J, Kiyono H. Dietary and microbial metabolites in the regulation of host immunity. Front Microbiol 2017;8:2171 [CrossRef]
    [Google Scholar]
  5. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010;464:59–65 [CrossRef]
    [Google Scholar]
  6. Sommer MOA. Advancing gut microbiome research using cultivation. Curr Opin Microbiol 2015;27:127–132 [CrossRef]
    [Google Scholar]
  7. Lagier J-C, Elkarkouri K, Rivet R, Couderc C, Raoult D et al. Non contiguous-finished genome sequence and description of Senegalemassilia anaerobia gen. nov., sp. nov. Stand Genomic Sci 2013;7:343–356 [CrossRef]
    [Google Scholar]
  8. Oren A, Garrity GM. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2014;64:1–5 [CrossRef]
    [Google Scholar]
  9. Bernardet J-F, Nakagawa Y, Holmes B.Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002;52:1049–1070 [CrossRef]
    [Google Scholar]
  10. Hucker GJ. A new modification and application of the gram stain. J Bacteriol 1921;6:395–397
    [Google Scholar]
  11. Gomori G. Preparation of buffers for use in enzyme studies. Methods Enzymol 1955;1:138–146
    [Google Scholar]
  12. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef]
    [Google Scholar]
  13. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucl Acids Symp Ser 1999;41:95–98
    [Google Scholar]
  14. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef]
    [Google Scholar]
  15. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef]
    [Google Scholar]
  16. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20:406–416 [CrossRef]
    [Google Scholar]
  17. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef]
    [Google Scholar]
  18. Jukes TH, Cantor CR.Evolution of protein molecules In Munro HN. editor Mammalian Protein Metabolism3 NY: Academic Press; 1969; pp21–132
    [Google Scholar]
  19. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef]
    [Google Scholar]
  20. Lee I, Chalita M, Ha S-M, Na S-I, Yoon S-H et al. ContEst16S: an algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int J Syst Evol Microbiol 2017;67:2053–2057 [CrossRef]
    [Google Scholar]
  21. Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 1997;25:955–964 [CrossRef]
    [Google Scholar]
  22. Nawrocki EP, Burge SW, Bateman A, Daub J, Eberhardt RY et al. Rfam 12.0: updates to the RNA families database. Nucleic Acids Res 2015;43:D130–D137 [CrossRef]
    [Google Scholar]
  23. Bairoch A, Apweiler R. The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Res 2000;28:45–48 [CrossRef]
    [Google Scholar]
  24. Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D et al. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res 2016;44:D286–D293 [CrossRef]
    [Google Scholar]
  25. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The seed and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 2014;42:D206–D214 [CrossRef]
    [Google Scholar]
  26. Kanehisa M, Goto S. Kegg: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000;28:27–30 [CrossRef]
    [Google Scholar]
  27. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017;110:1281–1286 [CrossRef]
    [Google Scholar]
  28. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef]
    [Google Scholar]
  29. Na S-I, Kim YO, Yoon S-H, Ha S-M, Baek I et al. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018;56:280–285 [CrossRef]
    [Google Scholar]
  30. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007;57:81–91 [CrossRef]
    [Google Scholar]
  31. Komagata K, Suzuki K-I.Lipid and cell-wall analysis on bacterial systematics In Colwell RR, Grigorova R. (editors) Methods in Microbiology19 London: Academic Press; 1987; pp177–182
    [Google Scholar]
  32. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003958
Loading
/content/journal/ijsem/10.1099/ijsem.0.003958
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error