1887

Abstract

A Gram-stain-positive strain, 8 H-2, was isolated from faeces of Reeves’ muntjac () barking deer in Taiwan. Cells of the strain were short rod-shaped, non-motile, non-haemolytic, asporogenous, facultatively anaerobic, heterofermentative and did not exhibit catalase and oxidase activities. Comparative analyses of 16S rRNA, and gene sequences demonstrated that the novel strain was a member of the genus . On the basis of 16S rRNA gene sequence similarities, the type strains of (99.2 %), (97.8 %), (97.6 %) and (97.3 %) were the closest neighbours to strain 8 H-2. The concatenated housekeeping gene sequence ( and ) similarities of 8 H-2 to closely related type strains were 72.5–84.9 %, respectively. The genomic DNA G+C content was 40.5 mol%. The average nucleotide identity and digital DNA–DNA hybridization values with these type strains were 70.2–75.4% and 25.1–30.1 %, respectively. Phenotypic and genotypic test results demonstrated that strain 8 H-2 represents a novel species belonging to the genus , for which the name sp. nov. is proposed. The type strain is 8 H-2 (=BCRC 81133=NBRC 113537).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003937
2020-01-02
2020-01-24
Loading full text...

Full text loading...

References

  1. Parte AC. LPSN--list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 2014;42: D613– D616 [CrossRef]
    [Google Scholar]
  2. Fusco V, Quero GM, Cho GS, Kabisch J, Meske D et al. The genus Weissella: taxonomy, ecology and biotechnological potential. Front Microbiol 2015;6: 155 [CrossRef]
    [Google Scholar]
  3. Magnusson J, Jonsson H, Schnürer J, Roos S. Weissella soli sp. nov., a lactic acid bacterium isolated from soil. Int J Syst Evol Microbiol 2002;52: 831– 834 [CrossRef]
    [Google Scholar]
  4. Nisiotou A, Dourou D, Filippousi ME, Banilas G, Tassou C. Weissella uvarum sp. nov., isolated from wine grapes. Int J Syst Evol Microbiol 2014;64: 3885– 3890 [CrossRef]
    [Google Scholar]
  5. Tohno M, Kitahara M, Inoue H, Uegaki R, Irisawa T et al. Weissella oryzae sp. nov., isolated from fermented rice grains. Int J Syst Evol Microbiol 2013;63: 1417– 1420 [CrossRef]
    [Google Scholar]
  6. Oh SJ, Shin N-R, Hyun D-W, Kim PS, Kim JY et al. Weissella diestrammenae sp. nov., isolated from the gut of a camel cricket (Diestrammena coreana). Int J Syst Evol Microbiol 2013;63: 2951– 2956 [CrossRef]
    [Google Scholar]
  7. Björkroth KJ, Schillinger U, Holzapfel WH, Korkeala HJ, Vandamme P et al. Taxonomic study of Weissella confusa and description of Weissella cibaria sp. nov., detected in food and clinical samples. Int J Syst Evol Microbiol 2002;52: 141– 148 [CrossRef]
    [Google Scholar]
  8. Kamboj K, Vasquez A, Balada-Llasat JM. Identification and significance of Weissella species infections. Front Microbiol 2015;6: 1204 [CrossRef]
    [Google Scholar]
  9. Huang CH, Huang L, Chang MT, Chen KL. Establishment and application of an analytical in-house database (IHDB) for rapid discrimination of Bacillus subtilis group (BSG) using whole-cell MALDI-TOF MS technology. Mol Cell Probes 2016;30: 312– 319 [CrossRef]
    [Google Scholar]
  10. Guu JR, Wang LT, Hamada M, Wang C, Lin RW et al. Lactobacillus bambusae sp. nov., isolated from traditional fermented ma bamboo shoots in Taiwan. Int J Syst Evol Microbiol 2018;68: 2424– 2430 [CrossRef]
    [Google Scholar]
  11. Naser SM, Thompson FL, Hoste B, Gevers D, Dawyndt P et al. Application of multilocus sequence analysis (MLSA) for rapid identification of Enterococcus species based on rpoA and pheS genes. Microbiology 2005;151: 2141– 2150 [CrossRef]
    [Google Scholar]
  12. Chao SH, Wu RJ, Watanabe K, Tsai YC. Diversity of lactic acid bacteria in suan-tsai and fu-tsai, traditional fermented mustard products of Taiwan. Int J Food Microbiol 2009;135: 203– 210 [CrossRef]
    [Google Scholar]
  13. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990;215: 403– 410 [CrossRef]
    [Google Scholar]
  14. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67: 1613– 1617 [CrossRef]
    [Google Scholar]
  15. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007;23: 2947– 2948 [CrossRef]
    [Google Scholar]
  16. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30: 2725– 2729 [CrossRef]
    [Google Scholar]
  17. Chor B, Hendy MD, Snir S. Maximum likelihood Jukes-Cantor triplets: Analytic solutions. Mol Biol Evol 2006;23: 626– 632 [CrossRef]
    [Google Scholar]
  18. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39: 783– 791 [CrossRef]
    [Google Scholar]
  19. Rzhetsky A, Nei M. A simple method for estimating and testing minimum-evolution trees. Mol Biol Evol 1992;9: 945– 967
    [Google Scholar]
  20. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993;10: 512– 526
    [Google Scholar]
  21. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4: 406– 425
    [Google Scholar]
  22. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16: 111– 120 [CrossRef] [CrossRef]
    [Google Scholar]
  23. Klimke W, Agarwala R, Badretdin A, Chetvernin S, Ciufo S et al. The national center for biotechnology information's protein clusters database. Nucleic Acids Res 2009;37: D216– D223 [CrossRef]
    [Google Scholar]
  24. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016;66: 1100– 1103 [CrossRef]
    [Google Scholar]
  25. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14: 60 [CrossRef]
    [Google Scholar]
  26. Kandler O, Weiss N. Genus Lactobacillus Beijerinck 1901, 212AL In Sneath PHA, Mair NS, Sharpe ME, Holt JG. (editors) Bergey’s Manual of Systematic Bacteriology2 Baltimore: Williams & Wilkins; 1986; pp 1209– 1234
    [Google Scholar]
  27. Hamada M, Yamamura H, Komukai C, Tamura T, Suzuki K et al. Luteimicrobium album sp. nov., a novel actinobacterium isolated from a lichen collected in Japan, and emended description of the genus Luteimicrobium. J Antibiot 2012;65: 427– 431 [CrossRef]
    [Google Scholar]
  28. Nozawa Y, Sakai N, Arai K, Kawasaki Y, Harada K. Reliable and sensitive analysis of amino acids in the peptidoglycan of actinomycetes using the advanced Marfey's method. J Microbiol Methods 2007;70: 306– 311 [CrossRef]
    [Google Scholar]
  29. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972;36: 407– 477
    [Google Scholar]
  30. Schumann P. Peptidoglycan Structure In Rainey F, Oren A. (editors) Taxonomy of Prokaryotes, Methods in Microbiology38 London: Academic Press; 2011; pp 101– 129
    [Google Scholar]
  31. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 1990;20: 16
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003937
Loading
/content/journal/ijsem/10.1099/ijsem.0.003937
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error