1887

Abstract

During investigations of spoilage-associated meat microbiota, isolates were found in two different laboratories showing highest similarities to DSM 29167, DSM 29164 and DSM 18862 based on 16S rRNA gene sequence comparisons. Phylogenetic analysis of the complete gene sequences of isolates B4-1 and SpeckC indicated a separate branch with 99.0 and 99.1 % identity, respectively, to their closest relative ( DSM 29167). Further phenotypic and chemotaxonomic characterizations, as well as average nucleotide identity (ANIb) values obtained from the draft genomes, revealed that these isolates could be considered as representing a novel species, with ANIb values of around 94 and 90 % with their closest relatives and . Other related species showed ANIb values below 90 %, including DSM 17149, DSM 18928, DSM 17489, DSM 11331 and DSM 18862. Genome-to-genome distance calculations between B4-1 and its closest relative, DSM 29167, showed 62.6 % relatedness. The G+C contents of B4-1 and SpeckC were 59.8 and 59.9 mol%, respectively. The major cellular lipids were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol; the major quinone was Q9. Based on these data, the new species sp. nov. is proposed, the type strain is B4-1 (=DSM 107652=LMG 30892); a second strain is SpeckC (=DSM 107651=LMG 30893).

Keyword(s): Pseudomonas , meat and rpoB
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003928
2020-01-10
2020-01-27
Loading full text...

Full text loading...

References

  1. Euzéby JP. List of bacterial names with standing in nomenclature: a folder available on the Internet. Int J Syst Evol Microbiol 1997;47:590–592 [CrossRef]
    [Google Scholar]
  2. Parte AC. LPSN—list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 2014;42:D613–D616 [CrossRef]
    [Google Scholar]
  3. Madigan MT, Martinko JM, Parker J. Procaryotic diversity: Bacteria. Brock Biology of Microorganisms Upper Saddle River: NJ Pearson Prentice Hall; 1997
    [Google Scholar]
  4. Andreani NA, Martino ME, Fasolato L, Carraro L, Montemurro F et al. Tracking the blue: a MLST approach to characterise the Pseudomonas fluorescens group. Food Microbiol 2014;39:116–126 [CrossRef]
    [Google Scholar]
  5. von Neubeck M, Baur C, Krewinkel M, Stoeckel M, Kranz B et al. Biodiversity of refrigerated raw milk microbiota and their enzymatic spoilage potential. Int J Food Microbiol 2015;211:57–65 [CrossRef]
    [Google Scholar]
  6. von Neubeck M, Huptas C, Glück C, Krewinkel M, Stoeckel M et al. Pseudomonas lactis sp. nov. and Pseudomonas paralactis sp. nov., isolated from bovine raw milk. Int J Syst Evol Microbiol 2017;67:1656–1664 [CrossRef]
    [Google Scholar]
  7. Ercolini D, Casaburi A, Nasi A, Ferrocino I, Di Monaco R et al. Different molecular types of Pseudomonas fragi have the same overall behaviour as meat spoilers. Int J Food Microbiol 2010;142:120–131 [CrossRef]
    [Google Scholar]
  8. Ercolini D, Russo F, Blaiotta G, Pepe O, Mauriello G et al. Simultaneous detection of Pseudomonas fragi, P. lundensis, and P. putida from meat by use of a multiplex PCR assay targeting the carA gene. Appl Environ Microbiol 2007;73:2354–2359 [CrossRef]
    [Google Scholar]
  9. Ercolini D, Russo F, Nasi A, Ferranti P, Villani F. Mesophilic and psychrotrophic bacteria from meat and their spoilage potential in vitro and in beef. Appl Environ Microbiol 2009;75:1990–2001 [CrossRef]
    [Google Scholar]
  10. Jackson TC, Acuff GR, Dickson JS.Meat, poultry and seafood In Doyle MP, Beuchat LR, Montville TJ. (editors) Food Microbiology - Fundamentals and Frontiers Washington, DC: ASM Press; 1997; pp83–100
    [Google Scholar]
  11. Nychas GJE, Marshall DL, Sofos JN.Meat, poultry and seafood - microbial spoilage and public health concerns In Doyle MP, Beuchat LR. (editors) Food Microbiology - Fundamentals and Frontiers Washington, DC: ASM Press; 2007; pp105–140
    [Google Scholar]
  12. Fox GE, Wisotzkey JD, Jurtshuk P. How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Bacteriol 1992;42:166–170 [CrossRef]
    [Google Scholar]
  13. Tran PN, Savka MA, Gan HM. In-silico taxonomic classification of 373 genomes reveals species misidentification and new genospecies within the genus Pseudomonas. Front Microbiol 2017;8:1296 [CrossRef]
    [Google Scholar]
  14. Kröckel L. Black spots on pork and beef fat caused by Pseudomonas fluorescens. Mitteilungsblatt der Fleischforschung Kulmbach 2009;183:15–22
    [Google Scholar]
  15. Selenska-Pobell S, Gigova L, Petrova N. Strain-specific fingerprints of Rhizobium galegae generated by PCR with arbitrary and repetitive primers. J Appl Bacteriol 1995;79:425–431 [CrossRef]
    [Google Scholar]
  16. Versalovic J, Koeuth T, Lupski R. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res 1991;19:6823–6831 [CrossRef]
    [Google Scholar]
  17. Adékambi T, Shinnick TM, Raoult D, Drancourt M. Complete rpoB gene sequencing as a suitable supplement to DNA-DNA hybridization for bacterial species and genus delineation. Int J Syst Evol Microbiol 2008;58:1807–1814 [CrossRef]
    [Google Scholar]
  18. Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol 2005;187:6258–6264 [CrossRef]
    [Google Scholar]
  19. Konstantinidis KT, Tiedje JM. Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci U S A 2005;102:2567–2572 [CrossRef]
    [Google Scholar]
  20. Lane DJ.16S/23S rRNA sequencing In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics Chichester: John Wiley and Sons; 1991; pp115–175
    [Google Scholar]
  21. Olofsson TC, Ahrné S, Molin G. Composition of the bacterial population of refrigerated beef, identified with direct 16S rRNA gene analysis and pure culture technique. Int J Food Microbiol 2007;118:233–240 [CrossRef]
    [Google Scholar]
  22. Hall TA. BioEdit, a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT; version 7.2.5. Nucl Acids Symp 1999;Ser. 41:95–98
    [Google Scholar]
  23. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011;28:2731–2739 [CrossRef]
    [Google Scholar]
  24. Iizuka H, Komagata K. An attempt at grouping of the genus Pseudomonas. J Gen Appl Microbiol 1963;9:73–82 [CrossRef]
    [Google Scholar]
  25. Verhille S, Baϊda N, Dabboussi F, Hamze M, Izard D et al. Pseudomonas gessardii sp. nov. and Pseudomonas migulae sp. nov., two new species isolated from natural mineral waters. Int J Syst Bacteriol 1999;49:1559–1572 [CrossRef]
    [Google Scholar]
  26. Dabboussi F, Hamze M, Elomari M, Verhille S, Baϊda N et al. Pseudomonas libanensis sp. nov., a new species isolated from Lebanese spring waters. Int J Syst Bacteriol 1999;49 Pt 3:1091–1101 [CrossRef]
    [Google Scholar]
  27. Ehrenberg CG.Charakteristik von 274 neuen Arten von Infusorien Bekannt. Verhandl. Königl Berlin: Preuss. Akad. Wiss; 1840; pp197–219
    [Google Scholar]
  28. Levine M, Anderson DQ. Two new species of bacteria causing mustiness in eggs. J Bacteriol 1932;23:337–347
    [Google Scholar]
  29. Behrendt U, Schumann P, Meyer J-M, Ulrich A. Pseudomonas cedrina subsp. fulgida subsp. nov., a fluorescent bacterium isolated from the phyllosphere of grasses; emended description of Pseudomonas cedrina and description of Pseudomonas cedrina subsp. cedrina subsp. nov. Int J Syst Evol Microbiol 2009;59:1331–1335 [CrossRef]
    [Google Scholar]
  30. Behrendt U, Ulrich A, Schumann P, Meyer J-M, Spröer C. Pseudomonas lurida sp. nov., a fluorescent species associated with the phyllosphere of grasses. Int J Syst Evol Microbiol 2007;57:979–985 [CrossRef]
    [Google Scholar]
  31. JGI –Joint genome Institute JGI bacterial DNA isolation CTAB-2012. https://jgi.doe.gov/user-program-info/pmo-overview/protocols-sample-preparation-information
  32. Nurk S, Bankevich A, Antipov D, Gurevich AA, Korobeynikov A et al. Assembling single-cell genomes and mini-metagenomes from chimeric MDA products. J Comput Biol 2013;20:714–737 [CrossRef]
    [Google Scholar]
  33. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014;30:2068–2069 [CrossRef]
    [Google Scholar]
  34. Blom J, Albaum SP, Doppmeier D, Pühler A, Vorhölter F-J et al. EDGAR: a software framework for the comparative analysis of prokaryotic genomes. BMC Bioinformatics 2009;10:154 [CrossRef]
    [Google Scholar]
  35. Blom J, Kreis J, Spänig S, Juhre T, Bertelli C et al. EDGAR 2.0: an enhanced software platform for comparative gene content analyses. Nucleic Acids Res 2016;44:W22–W28 [CrossRef]
    [Google Scholar]
  36. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009;106:19126–19131 [CrossRef]
    [Google Scholar]
  37. Elomari M, Coroler L, Hoste B, Gillis M, Izard D et al. DNA relatedness among Pseudomonas strains isolated from natural mineral waters and proposal of Pseudomonas veronii sp. nov. Int J Syst Bacteriol 1996;46:1138–1144 [CrossRef]
    [Google Scholar]
  38. Ivanova EP, Gorshkova NM, Sawabe T, Hayashi K, Kalinovskaya NI et al. Pseudomonas extremorientalis sp. nov., isolated from a drinking water reservoir. Int J Syst Evol Microbiol 2002;52:2113–2120
    [Google Scholar]
  39. Paine S. Studies on bacteriosis, a brown blotch disease of cultivated mushrooms. Ann Appl Biol 1919;5:206–219
    [Google Scholar]
  40. Dabboussi F, Hamze M, Elomari M, Verhille S, Baida N et al. Taxonomic study of bacteria isolated from Lebanese spring waters: proposal for Pseudomonas cedrella sp. nov. and P. orientalis sp. nov. Res Microbiol 1999;150:303–316 [CrossRef]
    [Google Scholar]
  41. Migula W.Bacteriaceae (Stäbchenbakterien) In Engler A, Prantl K. (editors) Die natürlichen PflanzenfamilienTeil 1 Leipzig: Engelmann W; 1895; pp1–44
    [Google Scholar]
  42. Price MN, Dehal PS, Arkin AP. FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS One 2010;5:e9490 [CrossRef]
    [Google Scholar]
  43. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef]
    [Google Scholar]
  44. Rosselló-Mora R, Amann R. The species concept for prokaryotes. FEMS Microbiol Rev 2001;25:39–67 [CrossRef]
    [Google Scholar]
  45. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 1994;44:846–849 [CrossRef]
    [Google Scholar]
  46. King EO, Ward MK, Raney DE. Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med 1954;44:301–307
    [Google Scholar]
  47. Powers EM. Efficacy of the Ryu nonstaining KOH technique for rapidly determining Gram reactions of food-borne and waterborne bacteria and yeasts. Appl Environ Microbiol 1995;61:3756–3758
    [Google Scholar]
  48. Ryu E. A simple method of differentiation between Gram-positive and Gram-negative organisms without staining. Kitasato Arch Exp Med 1940;17:58–63
    [Google Scholar]
  49. Valentine RC, Shapiro BM, Stadtman ER. Regulation of glutamine synthetase. XII. Electron microscopy of the enzyme from Escherichia coli. Biochemistry 1968;7:2143–2152 [CrossRef]
    [Google Scholar]
  50. Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family 'Oxalobacteraceae' isolated from China. Int J Syst Evol Microbiol 2005;55:1149–1153 [CrossRef]
    [Google Scholar]
  51. Atlas RM. Handbook of Microbiological Media, 2nd ed. Boca Raton, Fl: CRC Press Inc; 1997
    [Google Scholar]
  52. Miller LT. Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 1982;16:584–586
    [Google Scholar]
  53. Kuykendall LD, Roy MA, O'Neill JJ, Devine TE. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 1988;38:358–361 [CrossRef]
    [Google Scholar]
  54. Reddy GSN, Matsumoto GI, Schumann P, Stackebrandt E, Shivaji S. Psychrophilic pseudomonads from Antarctica: Pseudomonas antarctica sp. nov., Pseudomonas meridiana sp. nov. and Pseudomonas proteolytica sp. nov. Int J Syst Evol Microbiol 2004;54:713–719 [CrossRef]
    [Google Scholar]
  55. Stead DE. Grouping of plant-pathogenic and some other Pseudomonas spp. by using cellular fatty acid profiles. Int J Syst Bacteriol 1992;42:281–295 [CrossRef]
    [Google Scholar]
  56. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959;37:911–917 [CrossRef]
    [Google Scholar]
  57. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990;13:128–130 [CrossRef]
    [Google Scholar]
  58. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990;66:199–202 [CrossRef]
    [Google Scholar]
  59. Tindall BJ, Sikorski J, Smibert RA, Krieg NR.Phenotypic characterization and the principles of comparative systematics In Reddy C, Beverage T, Breznak JA, Marzluf G, Schmidt TM. (editors) Methods for General and Molecular Microbiology Washington, DC: American Society for Microbiology; 2007; pp330–393
    [Google Scholar]
  60. Moore EB, Tindall B, Martins Dos Santos VP, Pieper D, Ramos JL.Nonmedical Pseudomonas In Dworkin MSF, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E. (editors) The Prokaryotes New York: Springer; 2006; p646–703
    [Google Scholar]
  61. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. Dna-Dna hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007;57:81–91 [CrossRef]
    [Google Scholar]
  62. Shimodaira H, Hasegawa M. Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol 1999;16:1114–1116 [CrossRef]
    [Google Scholar]
  63. Behrendt U, Ulrich A, Schumann P. Fluorescent pseudomonads associated with the phyllosphere of grasses; Pseudomonas trivialis sp. nov., Pseudomonas poae sp. nov. and Pseudomonas congelans sp. nov. Int J Syst Evol Microbiol 2003;53:1461–1469 [CrossRef]
    [Google Scholar]
  64. Hugh R, Guarraia L, Hatt H. The proposed neotype strains of Pseudomonas fluorescens (Trevisan) Migula 1895. Int Bull Bact Nomencl Tax 1964;14:145–155 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003928
Loading
/content/journal/ijsem/10.1099/ijsem.0.003928
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error