1887

Abstract

Strain TTM-71, isolated from a freshwater river in Taiwan, was characterized using a polyphasic taxonomic approach. Phylogenetic analyses based on 16S rRNA gene sequences and an up-to-date bacterial core gene set (92 protein clusters) indicated that strain TTM-71 is affiliated with species in the genus . The 16S rRNA gene sequence similarity indicated that strain TTM-71 is closely related to species within the genus (94.7–95.5 % sequence similarity) and had a high sequence similarity with SR 2-06 (95.5 %). Strain TTM-71 showed 70.3 % average nucleotide identity and 24.9 % digital DNA–DNA hybridization identity with YT21. Cells were Gram-stain-negative, aerobic, motile by gliding, rod-shaped and formed beige-colored colonies. Optimal growth occurred at 20 °C, pH 8, and in the presence of 0.5 % NaCl. The major fatty acids of strain TTM-71 were iso-C, iso-C G and summed feature 3 (comprising C ω and/or C ω). The predominant hydroxy fatty acid was iso-C 3-OH. The polar lipid profile consisted of a mixture of phosphatidylethanolamine, four uncharacterized aminophospholipids, one uncharacterized aminolipid, one uncharacterized phospholipid and one uncharacterized lipid. The predominant polyamine was homospermidine. The only isoprenoid quinone was MK-7. Genomic DNA G+C content was 45.6 mol%. On the basis of the polyphasic evidence presented, strain TTM-71 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is TTM-71 (=BCRC 81160=LMG 31017=KCTC 62871).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003875
2020-02-25
2020-06-04
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/3/1508.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003875&mimeType=html&fmt=ahah

References

  1. Shiratori H, Tagami Y, Morishita T, Kamihara Y, Beppu T et al. Filimonas lacunae gen. nov., sp. nov., a member of the phylum Bacteroidetes isolated from fresh water. Int J Syst Evol Microbiol 2009; 59:1137–1142 [CrossRef]
    [Google Scholar]
  2. Parte AC. LPSN – list of prokaryotic names with standing in nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 2018; 68:1825–1829 [CrossRef]
    [Google Scholar]
  3. Wang C, Lv Y, Li A, Bao G, Feng G et al. Deminuibacter soli gen. nov., sp. nov., isolated from forest soil, and reclassification of Filimonas aurantiibacter as Arvibacter aurantiibacter comb. nov. Int J Syst Evol Microbiol 2019; 69:1650–1655 [CrossRef]
    [Google Scholar]
  4. Han J-H, Kim T-S, Kim SB, Joung Y. Filimonas endophytica sp. nov., isolated from surface-sterilized root of Cosmos bipinnatus . Int J Syst Evol Microbiol 2015; 65:4863–4867 [CrossRef]
    [Google Scholar]
  5. Gao J-L, Sun P, Wang X-M, Qiu T-L, Lv F-Y et al. Filimonas zeae sp. nov., an endophytic bacterium isolated from maize root. Int J Syst Evol Microbiol 2016; 66:2730–2734 [CrossRef]
    [Google Scholar]
  6. Lin S-Y, Hameed A, Hsu Y-H, Liu Y-C, Lai W-A et al. Filimonas aquilariae sp. nov., isolated from agarwood chips. Int J Syst Evol Microbiol 2017; 67:3219–3225 [CrossRef]
    [Google Scholar]
  7. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [CrossRef]
    [Google Scholar]
  8. Anzai Y, Kudo Y, Oyaizu H. The phylogeny of the genera Chryseomonas, Flavimonas, and Pseudomonas supports synonymy of these three genera. Int J Syst Bacteriol 1997; 47:249–251 [CrossRef]
    [Google Scholar]
  9. Chen WM, Laevens S, Lee TM, Coenye T, De Vos P et al. Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. Int J Syst Evol Microbiol 2001; 51:1729–1735 [CrossRef]
    [Google Scholar]
  10. Yoon SH, SM H, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617
    [Google Scholar]
  11. Nawrocki EP, Eddy SR. Query-dependent banding (QDB) for faster RNA similarity searches. PLoS Comput Biol 2007; 3:e56 [CrossRef]
    [Google Scholar]
  12. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999; 41:95–98
    [Google Scholar]
  13. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [CrossRef]
    [Google Scholar]
  14. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425
    [Google Scholar]
  15. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [CrossRef]
    [Google Scholar]
  16. Kluge AG, Farris JS. Quantitative phyletics and the evolution of anurans. Syst Zool 1969; 18:1–32 [CrossRef]
    [Google Scholar]
  17. Kimura M. The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; 1983
    [Google Scholar]
  18. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993; 10:512–526
    [Google Scholar]
  19. Nei M, Kumar S. Molecular Evolution and Phylogenetics New York: Oxford University Press; 2000
    [Google Scholar]
  20. Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 2016; 32:3047–3048 [CrossRef]
    [Google Scholar]
  21. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [CrossRef]
    [Google Scholar]
  22. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [CrossRef]
    [Google Scholar]
  23. Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol Biol Evol 2017; 34:2115–2122 [CrossRef]
    [Google Scholar]
  24. Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D et al. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res 2016; 44:D286–D293 [CrossRef]
    [Google Scholar]
  25. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [CrossRef]
    [Google Scholar]
  26. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [CrossRef]
    [Google Scholar]
  27. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [CrossRef]
    [Google Scholar]
  28. Goris J, Klappenbach JA, Vandamme P, Coenye T, Konstantinidis KT et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [CrossRef]
    [Google Scholar]
  29. SI N, Kim YO, Yoon SH, SM H, Baek I et al. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285
    [Google Scholar]
  30. Bernardet JF, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070
    [Google Scholar]
  31. Schlegel HG, Lafferty R, Krauss I. The isolation of mutants not accumulating poly-?-hydroxybutyric acid. Archiv Mikrobiol 1970; 71:283–294 [CrossRef]
    [Google Scholar]
  32. Spiekermann P, Rehm BHA, Kalscheuer R, Baumeister D, Steinbüchel A. A sensitive, viable-colony staining method using Nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other lipid storage compounds. Arch Microbiol 1999; 171:73–80 [CrossRef]
    [Google Scholar]
  33. Reichenbach H. The order Cytophagales . In Balows A, Trüper HG, Dworkin M, Harder W. (editors) The Prokaryotes, a Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd ed. New York, NY: Springer; 1992 pp 3631–3675
    [Google Scholar]
  34. Schmidt K, Connor A, Britton G. Analysis of pigments: carotenoids and related polyenes. In Goodfellow M, O’Donnell AG. (editors) Chemical Methods in Prokaryotic Systematics Chichester: Wiley; 1994 pp 403–461
    [Google Scholar]
  35. Breznak JA, Costilow RN. Physicochemical factors in growth. In Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM. (editors) Methods for General and Molecular Bacteriology, 3rd ed. Washington, DC: American Society for Microbiology; 2007 pp 309–329
    [Google Scholar]
  36. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM. (editors) Methods for General and Molecular Bacteriology, 3rd ed. Washington, DC: American Society for Microbiology; 2007 pp 330–393
    [Google Scholar]
  37. Wen C-M, Tseng C-S, Cheng C-Y, Li Y-K. Purification, characterization and cloning of a chitinase from Bacillus sp. NCTU2. Biotechnol Appl Biochem 2002; 35:213–219 [CrossRef]
    [Google Scholar]
  38. Bowman JP. Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 2000; 50:1861–1868 [CrossRef]
    [Google Scholar]
  39. Chang S-C, Wang J-T, Vandamme P, Hwang J-H, Chang P-S et al. Chitinimonas taiwanensis gen. nov., sp. nov., a novel chitinolytic bacterium isolated from a freshwater pond for shrimp culture. Syst Appl Microbiol 2004; 27:43–49 [CrossRef]
    [Google Scholar]
  40. Nokhal TH, Schlegel HG. Taxonomic study of Paracoccus denitrificans . Int J Syst Bacteriol 1983; 33:26–37 [CrossRef]
    [Google Scholar]
  41. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  42. Embley TM, Wait R. Structural lipids of eubacteria. In Goodfellow M, O’Donnell AG. (editors) Chemical Methods in Prokaryotic Systematics Chichester: Wiley; 1994 pp 121–161
    [Google Scholar]
  43. Busse J, Auling G. Polyamine pattern as a chemotaxonomic marker within the Proteobacteria . Syst Appl Microbiol 1988; 11:1–8 [CrossRef]
    [Google Scholar]
  44. Busse H-J, Bunka S, Hensel A, Lubitz W. Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Evol Microbiol 1997; 47:698–708 [CrossRef]
    [Google Scholar]
  45. Collins MD. Isoprenoid quinones. In Goodfellow M, O’Donnell AG. (editors) Chemical Methods in Prokaryotic Systematics Chichester: Wiley; 1994 pp 265–309
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003875
Loading
/content/journal/ijsem/10.1099/ijsem.0.003875
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error