1887

Abstract

Strain CR1-09, an actinomycete isolated from the root of , was taxonomically studied based upon polyphasic approaches. The isolate formed a pair of ovular to circular, smooth-surfaced spores on short sporophores alternately branched from aerial mycelia. It contained -diaminopimelic acid in cell wall peptidoglycans. The major menaquinones were MK-9 (H) and MK-9 (H). The predominant cellular fatty acids were iso-C and C. The polar lipids profile consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, hydroxyl phosphatidylethanolamine, phosphatidylinositol, phosphatidylinositol mannosides, and unidentified ninhydrin positive phosphoglycolipids. Strain CR1-09 showed the highest 16S rRNA gene sequence similarity with DSM 104650 (99.5 %). Based on the polyphasic approach, DNA–DNA relatedness and average nucleotide identity (ANI), the strain is considered to represent a novel species of the genus , for which the name is proposed. The type strain is strain CR1-09 (=JCM 30045=TISTR 2273).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003858
2019-11-15
2019-12-11
Loading full text...

Full text loading...

References

  1. Nonomura H, Ohara Y. Distribution of actinomycetes in the soil. II. Microbispora, a new genus of the Streptomycetaceae. J Ferment Technol 1957;35: 307– 311
    [Google Scholar]
  2. Nonomura H, Ohara Y. Distribution of the actinomycetes in soil. IV. The isolation and classification of the genus Microbispora. J Ferment Technol 1960;38: 401– 405
    [Google Scholar]
  3. Miyadoh S, Amano S, Tohyama H, Shomura T. A taxonomic review of the genus Microbispora and a proposal to transfer two species to the genus Actinomadura and to combine ten species into Microbispora rosea. J Gen Microbiol 1990;136: 1905– 1913 [CrossRef]
    [Google Scholar]
  4. Boondaeng A, Ishida Y, Tamura T, Tokuyama S, Kitpreechavanich V. Microbispora siamensis sp. nov., a thermotolerant actinomycete isolated from soil. Int J Syst Evol Microbiol 2009;59: 3136– 3139 [CrossRef]
    [Google Scholar]
  5. Li C, Wang H, Wang X, Zhang Z, Zhang Y et al. Microbispora bryophytorum sp. nov., an actinomycete isolated from moss (Bryophyta). Int J Syst Evol Microbiol 2015;65: 1274– 1279 [CrossRef]
    [Google Scholar]
  6. Han C, Liu C, Zhao J, Guo L, Lu C et al. Microbispora camponoti sp. nov., a novel actinomycete isolated from the cuticle of Camponotus japonicus Mayr. Anton Leeuw Int J G 2016;109: 215– 223 [CrossRef]
    [Google Scholar]
  7. Nakajima Y, Kitpreechavanich V, Suzuki K-i, Kudo T. Microbispora corallina sp. nov., a new species of the genus Microbispora isolated from Thai soil. Int J Syst Bacteriol 1999;49: 1761– 1767 [CrossRef]
    [Google Scholar]
  8. Xu XX, Wang HL, Lin HP, Wang C, Qu Z et al. Microbispora hainanensis sp. nov., isolated from rhizosphere soil of Excoecaria agallocha in a mangrove. Int J Syst Evol Microbiol 2012;62: 2430– 2434 [CrossRef]
    [Google Scholar]
  9. Thawai C, Kittiwongwattana C, Thanaboripat D, Laosinwattana C, Koohakan P et al. Micromonospora soli sp. nov., isolated from rice rhizosphere soil. Anton Leeuw Int J G 2016;109: 449– 456 [CrossRef]
    [Google Scholar]
  10. Han C, Tian Y, Zhao J, Yu Z, Jiang S et al. Microbispora triticiradicis sp. nov., a novel actinomycete isolated from the root of wheat (Triticum aestivum L.). Int J Syst Evol Microbiol 2018;68: 3600– 3605 [CrossRef]
    [Google Scholar]
  11. Han C, Zhao J, Yu B, Shi H, Zhang C et al. Microbispora tritici sp. nov., a novel actinomycete isolated from a root of wheat (Triticum aestivum L.). Anton Leeuw Int J G 2019;9: 1– 9
    [Google Scholar]
  12. Klykleung N, Tanasupawat S, Pittayakhajonwut P, Ohkuma M, Kudo T. Amycolatopsis stemonae sp. nov., isolated from a Thai medicinal plant. Int J Syst Evol Microbiol 2015;65: 3894– 3899 [CrossRef]
    [Google Scholar]
  13. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966;16: 313– 340 [CrossRef]
    [Google Scholar]
  14. Arai T. Culture Media for Actinomycetes Tokyo, Japan: The Society for Actinomycetes; 1975
    [Google Scholar]
  15. Waksman SA. The Actinomycetes In: A Summary of Current Knowledge New York: Ronald; 1967
    [Google Scholar]
  16. Waksman SA. The Actinomycetes, Vol. 2, Classification, Identification and Descriptions of Genera and Species Baltimore: Williams and Wilkins; 1961
    [Google Scholar]
  17. Kelly KL. Inter-Society Color Council – National Bureau of Standards Color Name Charts Illustrated with Centroid Colors Washington, DC: US Government Printing Office; 1964
    [Google Scholar]
  18. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974;28: 226– 231
    [Google Scholar]
  19. Mikami H, Ishida Y. Post-Column fluorometric detection of reducing sugars in high performance liquid chromatography using arginine. Bunseki kagaku 1983;32: E207– E210 [CrossRef]
    [Google Scholar]
  20. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2: 233– 241 [CrossRef]
    [Google Scholar]
  21. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977;100: 221– 230 [CrossRef]
    [Google Scholar]
  22. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  23. Raeder U, Broda P. Rapid preparation of DNA from filamentous fungi. Lett Appl Microbiol 1985;1: 17– 20 [CrossRef]
    [Google Scholar]
  24. Lane DJ. 16S/23S rRNA sequencing In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics Chichester: Wiley; 1991; pp 115– 148
    [Google Scholar]
  25. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994;22: 4673– 4680 [CrossRef]
    [Google Scholar]
  26. Yoon SH, SM H, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67: 1613– 1617
    [Google Scholar]
  27. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4: 406– 425
    [Google Scholar]
  28. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20: 406– 416 [CrossRef]
    [Google Scholar]
  29. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17: 368– 376 [CrossRef]
    [Google Scholar]
  30. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33: 1870– 1874 [CrossRef]
    [Google Scholar]
  31. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39: 783– 791 [CrossRef]
    [Google Scholar]
  32. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012;19: 455– 477 [CrossRef]
    [Google Scholar]
  33. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019;10: 2182 [CrossRef]
    [Google Scholar]
  34. Lefort V, Desper R, Gascuel O. FastME 2.0: a comprehensive, accurate, and fast Distance-Based phylogeny inference program: table 1. Mol Biol Evol 2015;32: 2798– 2800 [CrossRef]
    [Google Scholar]
  35. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008;9: 75 [CrossRef]
    [Google Scholar]
  36. Aziz RK, Devoid S, Disz T, Edwards RA, Henry CS et al. Seed servers: high-performance access to the seed genomes, annotations, and metabolic models. PLoS One 2012;7: e48053 [CrossRef]
    [Google Scholar]
  37. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009;106: 19126– 19131 [CrossRef]
    [Google Scholar]
  38. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016;32: 929– 931 [CrossRef]
    [Google Scholar]
  39. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14: 60 [CrossRef]
    [Google Scholar]
  40. Lechevalier MP, De Bievre C, Lechevalier H. Chemotaxonomy of aerobic actinomycetes: phospholipid composition. Biochem Syst Ecol 1977;5: 249– 260 [CrossRef]
    [Google Scholar]
  41. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016;32: 929– 931 [CrossRef]
    [Google Scholar]
  42. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009;106: 19126– 19131 [CrossRef]
    [Google Scholar]
  43. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018;68: 461– 466 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003858
Loading
/content/journal/ijsem/10.1099/ijsem.0.003858
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error