1887

Abstract

A novel Gram-staining negative, aerobic, motile by flagellum, rod-shaped bacterium, designated CFH 70021 was isolated from a hot spring soil sample collected from Tengchong, Yunnan province, PR China. Growth of CFH 70021 occurred at 15–50 °C (optimum 50 °C), pH 5.0–7.0 (optimum pH 7.0) and with 0–3.0 % (w/v) NaCl (optimum 0 %, w/v). The genome of CFH 70021 consisted of four complete circular chromosomes and five plasmids, the genomic DNA G+C content was 69.3 mol%. Comparison of the 16S rRNA gene sequences indicated that CFH 70021 represented a member of the genus and showed close relationship with the type strains of CC-HIH038 (97.8 %), IMMIB AFH-6 (97.6 %), GSF71 (97.6 %), DSM 21654 (97.4 %) and IMMIB TAR-3 (97.2 %). The polar lipids of CFH 70021 contained diphosphatidylglycerol, phosphatidylmehtylethanolamine, phosphatidylglycerol, phosphatidylcholine, two aminolipids and an unidentified phospholipid. The predominant cellular fatty acids (>10 %) included Ccyclo ω (11.4 %), C (27.6 %) and summed feature 8 (Cω7/Cω6, 40.9 %). The major isoprenoid quinone was Q-10. On the basis of the low ANIb result (<78 %) and different phenotypic and chemotaxonomic characters, we conclude that strain CFH 70021 represents a novel member of the genus , for which the name sp. nov. is proposed. The type strain is CFH 70021 (=KCTC 62259= CCTCC AB2018121).

Funding
This study was supported by the:
  • Hong Ming , Doctor Scientific Research Fund of Xinxiang Medical University , (Award XYBSKYZZ201625)
  • Chenlong Ding , Jiangsu Agricultural Science and Technology Innovation Fund , (Award CX-18 2016)
  • Hong Ming , Henan Province University youth researcher support project , (Award 2017GGJS106)
  • Guo-Xing Nie , Distinguished Middle-Aged and Young Scientist Encourage and Reward Foundation of Shandong Province (CN) , (Award CXTD2016043)
  • Hong Ming , Natural Science Foundation of China , (Award 3150004)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003788
2020-02-03
2021-02-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/1/550.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003788&mimeType=html&fmt=ahah

References

  1. Tarrand JJ, Krieg NR, Döbereiner J. A taxonomic study of the Spirillum lipoferum group, with descriptions of a new genus, Azospirillum gen. nov. and two species, Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. Can J Microbiol 1978; 24:967–980 [CrossRef]
    [Google Scholar]
  2. Mehnaz S, Weselowski B, Lazarovits G. Azospirillum canadense sp. nov., a nitrogen-fixing bacterium isolated from corn rhizosphere. Int J Syst Evol Microbiol 2007; 57:620–624 [CrossRef]
    [Google Scholar]
  3. Reinhold B, Hurek T, Fendrik I, Pot B, Gillis M et al. Azospirillum halopraeferens sp. nov., a nitrogen-fixing organism associated with roots of Kallar grass (Leptochloa fusca (L.) Kunth). Int J Syst Bacteriol 1987; 37:43–51 [CrossRef]
    [Google Scholar]
  4. Lin SY, Liu YC, Hameed A, Hsu YH, Lai WA et al. Azospirillum fermentarium sp. nov., a nitrogen-fixing species isolated from a fermenter. Int J Syst Evol Microbiol 2013; 63:3762–3768 [CrossRef]
    [Google Scholar]
  5. Lin SY, Liu YC, Hameed A, Hsu YH, Huang HI et al. Azospirillum agricola sp. nov., a nitrogen-fixing species isolated from cultivated soil. Int J Syst Evol Microbiol 2016; 66:1453–1458 [CrossRef]
    [Google Scholar]
  6. Lavrinenko K, Chernousova E, Gridneva E, Dubinina G, Akimov V et al. Azospirillum thiophilum sp. nov., a diazotrophic bacterium isolated from a sulfide spring. Int J Syst Evol Microbiol 2010; 60:2832–2837 [CrossRef]
    [Google Scholar]
  7. Ming H, Yin YR, Li S, Nie GX, Yu TT et al. Thermus caliditerrae sp. nov., a novel thermophilic species isolated from a geothermal area. Int J Syst Evol Microbiol 2014; 64:650–656 [CrossRef]
    [Google Scholar]
  8. Li WJ, Xu P, Schumann P, Zhang YQ, Pukall R et al. Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia . Int J Syst Evol Microbiol 2007; 57:1424–1428 [CrossRef]
    [Google Scholar]
  9. da Mota FF, Gomes EA, Paiva E, Rosado AS, Seldin L et al. Use of rpoB gene analysis for identification of nitrogen-fixing Paenibacillus species as an alternative to the 16S rRNA gene. Lett Appl Microbiol 2004; 39:34–40 [CrossRef]
    [Google Scholar]
  10. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [CrossRef]
    [Google Scholar]
  11. Edgar RC. Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [CrossRef]
    [Google Scholar]
  12. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [CrossRef]
    [Google Scholar]
  13. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [CrossRef]
    [Google Scholar]
  14. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [CrossRef]
    [Google Scholar]
  15. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [CrossRef]
    [Google Scholar]
  16. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S et al. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [CrossRef]
    [Google Scholar]
  17. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [CrossRef]
    [Google Scholar]
  18. Eid J, Fehr A, Gray J, Luong K, Lyle J et al. Real-time DNA sequencing from single polymerase molecules. Science 2009; 323:133–138 [CrossRef]
    [Google Scholar]
  19. Antunes A, Alam I, Bajic VB, Stingl U. Genome sequence of Halorhabdus tiamatea, the first archaeon isolated from a deep-sea anoxic brine lake. J Bacteriol 2011; 193:4553–4554 [CrossRef]
    [Google Scholar]
  20. Freel KC, Sarilar V, Neuvéglise C, Devillers H, Friedrich A et al. Genome sequence of the yeast Cyberlindnera fabianii (Hansenula fabianii). Genome Announc 2014; 2:e00638-14 [CrossRef]
    [Google Scholar]
  21. Delcher AL. Glimmer release notes version 3.02; 2006
  22. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37:463–464 [CrossRef]
    [Google Scholar]
  23. Meier-Kolthoff JP, Göker M, Spröer C, Klenk HP. When should a DDH experiment be mandatory in microbial taxonomy?. Arch Microbiol 2013; 195:413–418 [CrossRef]
    [Google Scholar]
  24. Cerny G. Studies on the aminopeptidase test for the distinction of Gram-negative from Gram-positive bacteria. Eur J Appl Microbiol Biotechnol 1978; 5:113–122 [CrossRef]
    [Google Scholar]
  25. Leifson E. Atlas of Bacterial Flagellation New York: Academic Press; 1960
    [Google Scholar]
  26. Nie GX, Ming H, Li S, Zhou EM, Cheng J et al. Amycolatopsis dongchuanensis sp. nov., an actinobacterium isolated from soil. Int J Syst Evol Microbiol 2012; 62:2650–2656 [CrossRef]
    [Google Scholar]
  27. Nie GX, Ming H, Li S, Zhou EM, Cheng J et al. Geodermatophilus nigrescens sp. nov., isolated from a dry-hot valley. Antonie van Leeuwenhoek 2012; 101:811–817 [CrossRef]
    [Google Scholar]
  28. Kovacs N. Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 1956; 178:703–704 [CrossRef]
    [Google Scholar]
  29. Gonzalez C, Gutierrez C, Ramirez C. Halobacterium vallismortis sp. nov. an amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 1978; 24:710–715 [CrossRef]
    [Google Scholar]
  30. MacFaddin JF. Biochemical Tests for Identification of Medical Bacteria Baltimore: Williams and Wilkins; 1976 [CrossRef]
    [Google Scholar]
  31. Barrow GI, Feltham RKA. Cowan and Steel's Manual for the Identification of Medical Bacteria Cambridge: Cambridge University Press; 19930-521-32611-7 [CrossRef]
    [Google Scholar]
  32. Al-Tai A, Kim B, Kim SB, Manfio GP, Goodfellow M. Streptomyces malaysiensis sp. nov., a new streptomycete species with rugose, ornamented spores. Int J Syst Bacteriol 1999; 49:1395–1402 [CrossRef]
    [Google Scholar]
  33. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 1990; 20:16
    [Google Scholar]
  34. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [CrossRef]
    [Google Scholar]
  35. Tamaoka J, Katayama-Fujimura Y, Kuraishi H. Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacteriol 1983; 54:31–36 [CrossRef]
    [Google Scholar]
  36. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [CrossRef]
    [Google Scholar]
  37. Collins MD, Jones D. Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. J Appl Bacteriol 1980; 48:459–470 [CrossRef]
    [Google Scholar]
  38. Minnikin DE, Collins MD, Goodfellow M. Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 1979; 47:87–95 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003788
Loading
/content/journal/ijsem/10.1099/ijsem.0.003788
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error