1887

Abstract

A novel Gram-staining negative, aerobic, motile by flagellum, rod-shaped bacterium, designated CFH 70021 was isolated from a hot spring soil sample collected from Tengchong, Yunnan province, PR China. Growth of CFH 70021 occurred at 15–50 °C (optimum 50 °C), pH 5.0–7.0 (optimum pH 7.0) and with 0–3.0 % (w/v) NaCl (optimum 0 %, w/v). The genome of CFH 70021 consisted of four complete circular chromosomes and five plasmids, the genomic DNA G+C content was 69.3 mol%. Comparison of the 16S rRNA gene sequences indicated that CFH 70021 represented a member of the genus and showed close relationship with the type strains of CC-HIH038 (97.8 %), IMMIB AFH-6 (97.6 %), GSF71 (97.6 %), DSM 21654 (97.4 %) and IMMIB TAR-3 (97.2 %). The polar lipids of CFH 70021 contained diphosphatidylglycerol, phosphatidylmehtylethanolamine, phosphatidylglycerol, phosphatidylcholine, two aminolipids and an unidentified phospholipid. The predominant cellular fatty acids (>10 %) included Ccyclo ω (11.4 %), C (27.6 %) and summed feature 8 (Cω7/Cω6, 40.9 %). The major isoprenoid quinone was Q-10. On the basis of the low ANIb result (<78 %) and different phenotypic and chemotaxonomic characters, we conclude that strain CFH 70021 represents a novel member of the genus , for which the name sp. nov. is proposed. The type strain is CFH 70021 (=KCTC 62259= CCTCC AB2018121).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003788
2019-10-25
2019-11-13
Loading full text...

Full text loading...

References

  1. Tarrand JJ, Krieg NR, Döbereiner J. A taxonomic study of the Spirillum lipoferum group, with descriptions of a new genus, Azospirillum gen. nov. and two species, Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. Can J Microbiol 1978;24: 967– 980 [CrossRef]
    [Google Scholar]
  2. Mehnaz S, Weselowski B, Lazarovits G. Azospirillum canadense sp. nov., a nitrogen-fixing bacterium isolated from corn rhizosphere. Int J Syst Evol Microbiol 2007;57: 620– 624 [CrossRef]
    [Google Scholar]
  3. Reinhold B, Hurek T, Fendrik I, Pot B, Gillis M et al. Azospirillum halopraeferens sp. nov., a nitrogen-fixing organism associated with roots of Kallar grass (Leptochloa fusca (L.) Kunth). Int J Syst Bacteriol 1987;37: 43– 51 [CrossRef]
    [Google Scholar]
  4. Lin SY, Liu YC, Hameed A, Hsu YH, Lai WA et al. Azospirillum fermentarium sp. nov., a nitrogen-fixing species isolated from a fermenter. Int J Syst Evol Microbiol 2013;63: 3762– 3768 [CrossRef]
    [Google Scholar]
  5. Lin SY, Liu YC, Hameed A, Hsu YH, Huang HI et al. Azospirillum agricola sp. nov., a nitrogen-fixing species isolated from cultivated soil. Int J Syst Evol Microbiol 2016;66: 1453– 1458 [CrossRef]
    [Google Scholar]
  6. Lavrinenko K, Chernousova E, Gridneva E, Dubinina G, Akimov V et al. Azospirillum thiophilum sp. nov., a diazotrophic bacterium isolated from a sulfide spring. Int J Syst Evol Microbiol 2010;60: 2832– 2837 [CrossRef]
    [Google Scholar]
  7. Ming H, Yin YR, Li S, Nie GX, Yu TT et al. Thermus caliditerrae sp. nov., a novel thermophilic species isolated from a geothermal area. Int J Syst Evol Microbiol 2014;64: 650– 656 [CrossRef]
    [Google Scholar]
  8. Li WJ, Xu P, Schumann P, Zhang YQ, Pukall R et al. Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia. Int J Syst Evol Microbiol 2007;57: 1424– 1428 [CrossRef]
    [Google Scholar]
  9. da Mota FF, Gomes EA, Paiva E, Rosado AS, Seldin L et al. Use of rpoB gene analysis for identification of nitrogen-fixing Paenibacillus species as an alternative to the 16S rRNA gene. Lett Appl Microbiol 2004;39: 34– 40 [CrossRef]
    [Google Scholar]
  10. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62: 716– 721 [CrossRef]
    [Google Scholar]
  11. Edgar RC. Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004;32: 1792– 1797 [CrossRef]
    [Google Scholar]
  12. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018;35: 1547– 1549 [CrossRef]
    [Google Scholar]
  13. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4: 406– 425 [CrossRef]
    [Google Scholar]
  14. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20: 406– 416 [CrossRef]
    [Google Scholar]
  15. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17: 368– 376 [CrossRef]
    [Google Scholar]
  16. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S et al. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30: 2725– 2729 [CrossRef]
    [Google Scholar]
  17. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39: 783– 791 [CrossRef]
    [Google Scholar]
  18. Eid J, Fehr A, Gray J, Luong K, Lyle J et al. Real-time DNA sequencing from single polymerase molecules. Science 2009;323: 133– 138 [CrossRef]
    [Google Scholar]
  19. Antunes A, Alam I, Bajic VB, Stingl U. Genome sequence of Halorhabdus tiamatea, the first archaeon isolated from a deep-sea anoxic brine lake. J Bacteriol 2011;193: 4553– 4554 [CrossRef]
    [Google Scholar]
  20. Freel KC, Sarilar V, Neuvéglise C, Devillers H, Friedrich A et al. Genome sequence of the yeast Cyberlindnera fabianii (Hansenula fabianii). Genome Announc 2014;2: e00638-14 [CrossRef]
    [Google Scholar]
  21. Delcher AL. Glimmer release notes version 3.02. 2006
  22. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987;37: 463– 464 [CrossRef]
    [Google Scholar]
  23. Meier-Kolthoff JP, Göker M, Spröer C, Klenk HP. When should a DDH experiment be mandatory in microbial taxonomy?. Arch Microbiol 2013;195: 413– 418 [CrossRef]
    [Google Scholar]
  24. Cerny G. Studies on the aminopeptidase test for the distinction of Gram-negative from Gram-positive bacteria. Eur J Appl Microbiol Biotechnol 1978;5: 113– 122 [CrossRef]
    [Google Scholar]
  25. Leifson E. Atlas of Bacterial Flagellation New York: Academic Press; 1960
    [Google Scholar]
  26. Nie GX, Ming H, Li S, Zhou EM, Cheng J et al. Amycolatopsis dongchuanensis sp. nov., an actinobacterium isolated from soil. Int J Syst Evol Microbiol 2012;62: 2650– 2656 [CrossRef]
    [Google Scholar]
  27. Nie GX, Ming H, Li S, Zhou EM, Cheng J et al. Geodermatophilus nigrescens sp. nov., isolated from a dry-hot valley. Antonie van Leeuwenhoek 2012;101: 811– 817 [CrossRef]
    [Google Scholar]
  28. Kovacs N. Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 1956;178: 703– 704 [CrossRef]
    [Google Scholar]
  29. Gonzalez C, Gutierrez C, Ramirez C. Halobacterium vallismortis sp. nov. an amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 1978;24: 710– 715 [CrossRef]
    [Google Scholar]
  30. MacFaddin JF. Biochemical Tests for Identification of Medical Bacteria Baltimore: Williams and Wilkins; 1976; [CrossRef]
    [Google Scholar]
  31. Barrow GI, Feltham RKA. Cowan and Steel's Manual for the Identification of Medical Bacteria Cambridge: Cambridge University Press; 1993; 0-521-32611-7 [CrossRef]
    [Google Scholar]
  32. Al-Tai A, Kim B, Kim SB, Manfio GP, Goodfellow M. Streptomyces malaysiensis sp. nov., a new streptomycete species with rugose, ornamented spores. Int J Syst Bacteriol 1999;49: 1395– 1402 [CrossRef]
    [Google Scholar]
  33. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 1990;20: 16
    [Google Scholar]
  34. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977;100: 221– 230 [CrossRef]
    [Google Scholar]
  35. Tamaoka J, Katayama-Fujimura Y, Kuraishi H. Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacteriol 1983;54: 31– 36 [CrossRef]
    [Google Scholar]
  36. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2: 233– 241 [CrossRef]
    [Google Scholar]
  37. Collins MD, Jones D. Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. J Appl Bacteriol 1980;48: 459– 470 [CrossRef]
    [Google Scholar]
  38. Minnikin DE, Collins MD, Goodfellow M. Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 1979;47: 87– 95 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003788
Loading
/content/journal/ijsem/10.1099/ijsem.0.003788
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error