1887

Abstract

Strain MS2379 was isolated from a pasteurized solution sample from a predominantly anaerobic fermentation system processing bovine manure in Pilot Point, Texas. Phylogenetic analyses based on both 16S rRNA gene and gene sequences showed that MS2379 was most closely related to (DSM 36) (DSM 13815) (DSM 8320) yet DNA–DNA relatedness through DNA–DNA hybridization revealed only 22.6, 32.0 and 24.7 % relatedness to these three species respectively. Rod-shaped cells of strain MS2379 are Gram-stain variable with sub-terminal, ellipsoidal, deforming endospores. The peptidoglycan contains -diaminopimelic acid (mDAP) and the predominant fatty acids are anteiso-C (61.9 %) and anteiso-C (11.6 %), confirming that strain MS2379 has diagnostic features of other species. The G+C content of MS2379 is 45.9 mol%. Fermentation of glucose yields acid and gas end-products. The polar lipids found were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, and glycolipids, but also included some unidentified lipids, aminolipids, aminoglycolipid, and phosphatidylmethylethanolamine. The growth range of MS2379 was observed from 10–45 °C with optimal growth temperature at 30 °C. Growth was observed between pH 6–10 and up to 3 % NaCl. Unlike the most closely related species, strain MS2379 was negative in the Voges-Proskauer reaction. Nucleic acid, chemotaxonomic and biochemical features support the distinctiveness of strain MS2379. Thus, strain MS2379 represents a novel species of the genus for which the name sp. nov. is proposed with the type strain MS2379 (=DSM 107750=ATCC TSD-165).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003672
2020-01-21
2020-02-28
Loading full text...

Full text loading...

References

  1. Grady EN, MacDonald J, Liu L, Richman A, Yuan Z-C. Current knowledge and perspectives of Paenibacillus: a review. Microb Cell Fact 2016;15: 1– 18 [CrossRef]
    [Google Scholar]
  2. Uetanabaro AP, Wahrenburg C, Hunger W, Pukall R, Spröer C et al. Paenibacillus agarexedens sp. nov., nom. rev., and Paenibacillus agaridevorans sp. nov. Int J Syst Evol Microbiol 2003;53: 1051– 1057 [CrossRef]
    [Google Scholar]
  3. Benardini JN, Vaishampayan PA, Schwendner P, Swanner E, Fukui Y et al. Paenibacillus phoenicis sp. nov., isolated from the Phoenix Lander assembly facility and a subsurface molybdenum mine. Int J Syst Evol Microbiol 2011;61: 1338– 1343 [CrossRef]
    [Google Scholar]
  4. Wang XM, Ma S, Yang SY, Peng R, Zheng Y et al. Paenibacillus nasutitermitis sp. nov., isolated from a termite gut. Int J Syst Evol Microbiol 2016;66: 901– 905 [CrossRef]
    [Google Scholar]
  5. Vaz-Moreira I, Faria C, Nobre MF, Schumann P, Nunes OC et al. Paenibacillus humicus sp. nov., isolated from poultry litter compost. Int J Syst Evol Microbiol 2007;57: 2267– 2271 [CrossRef]
    [Google Scholar]
  6. Aguilera M, Monteoliva-Sánchez M, Suárez A, Guerra V, Lizama C et al. Paenibacillus jamilae sp. nov., an exopolysaccharide-producing bacterium able to grow in olive-mill wastewater. Int J Syst Evol Microbiol 2001;51: 1687– 1692 [CrossRef]
    [Google Scholar]
  7. Priest FG. Genus I. Paenibacillus In De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W. (editors) Bergey’s Manual of Systematic Bacteriology New York: Springer; 2009; pp 269– 295
    [Google Scholar]
  8. Logan NA, Berge O, Bishop AH, Busse H-J, De Vos P et al. Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 2009;59: 2114– 2121 [CrossRef]
    [Google Scholar]
  9. Lane DJ. 16S/23S rRNA sequencing Nucleic Acid Techniques in Bacterial Systematics 1991; pp 115– 175
    [Google Scholar]
  10. da Mota FF, Gomes EA, Paiva E, Rosado AS, Seldin L. Use of rpoB gene analysis for identification of nitrogen-fixing Paenibacillus species as an alternative to the 16S rRNA gene. Lett Appl Microbiol 2004;39: 34– 40 [CrossRef]
    [Google Scholar]
  11. Dahllöf I, Baillie H, Kjelleberg S. rpoB-based microbial community analysis avoids limitations inherent in 16S rRNA gene intraspecies heterogeneity. Appl Environ Microbiol 2000;66: 3376– 3380 [CrossRef]
    [Google Scholar]
  12. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z et al. Gapped blast and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997;25: 3389– 3402 [CrossRef]
    [Google Scholar]
  13. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007;23: 2947– 2948 [CrossRef]
    [Google Scholar]
  14. Tamura K, Dudley J, Nei M, Kumar S. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 2007;24: 1596– 1599 [CrossRef]
    [Google Scholar]
  15. Kim M, Oh H-S, Park S-C, Chun J, Hyun-Seok O. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014;64: 346– 351 [CrossRef]
    [Google Scholar]
  16. Menéndez E, Carro L, Tejedor C, Fernández-Pascual M, Martínez-Molina E et al. Paenibacillus hispanicus sp. nov. isolated from Triticum aestivum roots. Int J Syst Evol Microbiol 2016;66: 4628– 4632 [CrossRef]
    [Google Scholar]
  17. Kämpfer P, Busse H-J, McInroy JA, Hu C-H, Kloepper JW et al. Paenibacillus rhizoplanae sp. nov., isolated from the rhizosphere of Zea mays. Int J Syst Evol Microbiol 2017;67: 1058– 1063 [CrossRef]
    [Google Scholar]
  18. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018;68: 461– 466 [CrossRef]
    [Google Scholar]
  19. Nurk S, Bankevich A, Antipov D, Gurevich A, Korobeynikov A. Assembling genomes and mini-metagenomes from highly chimeric reads In Deng M, Jiang R, Sun F, Zhang X. (editors) Research in Computational Molecular Biology, Lecture Notes in Computer Science Berlin: Springer-Verlag; 2013; pp 158– 170
    [Google Scholar]
  20. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008;9: 75 [CrossRef]
    [Google Scholar]
  21. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The seed and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 2014;42: D206– D214 [CrossRef]
    [Google Scholar]
  22. Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S et al. RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 2015;5: 8365 [CrossRef]
    [Google Scholar]
  23. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016;44: 6614– 6624 [CrossRef]
    [Google Scholar]
  24. Haft DH, DiCuccio M, Badretdin A, Brover V, Chetvernin V et al. Refseq: an update on prokaryotic genome annotation and curation. Nucleic Acids Res 2018;46: D851– D860 [CrossRef]
    [Google Scholar]
  25. Wu M, Scott AJ. Phylogenomic analysis of bacterial and archaeal sequences with AMPHORA2. Bioinformatics 2012;28: 1033– 1034 [CrossRef]
    [Google Scholar]
  26. Rodriguez-R LM, Konstantinidis KT. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Preprints 2016
    [Google Scholar]
  27. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007;57: 81– 91 [CrossRef]
    [Google Scholar]
  28. Rhuland LE, Work E, Denman RF, Hoare DS. The behavior of the isomers of α,ε-diaminopimelic acid on paper chromatograms. J Am Chem Soc 1955;77: 4844– 4846 [CrossRef]
    [Google Scholar]
  29. De Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970;12: 133– 142 [CrossRef]
    [Google Scholar]
  30. Huss VA, Festl H, Schleifer KH. Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 1983;4: 184– 192 [CrossRef]
    [Google Scholar]
  31. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989;39: 159– 167 [CrossRef]
    [Google Scholar]
  32. Kuykendall LD, Roy MA, O'NEILL JJ, Devine TE, Acids F. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 1988;38: 358– 361 [CrossRef]
    [Google Scholar]
  33. Miller LT. Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 1982;16: 584– 586 [CrossRef]
    [Google Scholar]
  34. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics Methods for General and Molecular Microbiology, 3rd ed. American Society of Microbiology; 2007; pp 330– 393
    [Google Scholar]
  35. Shida O, Takagi H, Kadowaki K, Nakamura LK, Komagata K. Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus. Int J Syst Bacteriol 1997;47: 289– 298 [CrossRef]
    [Google Scholar]
  36. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the a d hoc Committee on reconciliation of approaches to bacterial Systematics. Int J Syst Evol Microbiol 1987;37: 463– 464 [CrossRef]
    [Google Scholar]
  37. Kämpfer P, Rosselló-Mora R, Falsen E, Busse HJ, Tindall BJ. Cohnella thermotolerans gen. nov., sp. nov., and classification of 'Paenibacillus hongkongensis' as Cohnella hongkongensis sp. nov. Int J Syst Evol Microbiol 2006;56: 781– 786 [CrossRef]
    [Google Scholar]
  38. Logan NA, Berkeley RCW. Identification of Bacillus strains using the API system. Microbiology 1984;130: 1871– 1882 [CrossRef]
    [Google Scholar]
  39. Leboffe MJ, Pierce BE. Microbiology: Laboratory Theory and Application Morton Publishing Company; 2010
    [Google Scholar]
  40. Baldani JI, Reis VM, Videira SS, Boddey LH, Baldani VLD. The art of isolating nitrogen-fixing bacteria from non-leguminous plants using N-free semi-solid media: a practical guide for microbiologists. Plant Soil 2014;384: 413– 431 [CrossRef]
    [Google Scholar]
  41. Nakamura LK. Bacillus polymyxa (Prazmowski) Mace 1889 deoxyribonucleic acid relatedness and base composition. Int J Syst Bacteriol 1987;37: 391– 397 [CrossRef]
    [Google Scholar]
  42. Yoon J-H, Yoon BD, Kang KH, Park YH. Paenibacillus kribbensis sp. nov. and Paenibacillus terrae sp. nov., bioflocculants for efficient harvesting of algal cells. Int J Syst Evol Microbiol 2003;53: 295– 301 [CrossRef]
    [Google Scholar]
  43. Smith NR, Gibson T, Gordon RE, Sneath PH. Type cultures of proposed neotype cultures. J Gen Microbiol 1964;34: 269– 272
    [Google Scholar]
  44. Montefusco A, Nakamura LK, Labeda DP. Bacillus peoriae sp. nov. Int J Syst Bacteriol 1993;43: 388– 390 [CrossRef]
    [Google Scholar]
  45. Heyndrickx M, Vandemeulebroecke K, Scheldeman P, Kersters K, de Vos P et al. A polyphasic reassessment of the genus Paenibacillus, reclassification of Bacillus lautus (Nakamura 1984) as Paenibacillus lautus comb. nov. and of Bacillus peoriae (Montefusco et al. 1993) as Paenibacillus peoriae comb. nov., and emended descriptions of P. lautus and of P. peoriae. Int J Syst Bacteriol 1996;46: 988– 1003 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003672
Loading
/content/journal/ijsem/10.1099/ijsem.0.003672
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error