1887

Abstract

The species corresponds to a complex, including two subspecies with validly published names, two proposed subspecies and two new species, and Recent studies suggested that this complex needed revision. We examined the taxonomic status of 144 strains isolated from a wide range of plant species, various geographical origins and waterways. Sequences of the , and housekeeping genes clustered 114 of these strains together within a not yet described clade. We sequenced eight strains of this clade and analysed them together with the 102 genomes available in the NCBI database. Phylogenetic analysis, average nucleotide identity calculation and DNA–DNA hybridization allowed us to differentiate seven clades. This led us to propose the elevation of subsp. to species level as sp. nov. (type strain CFBP 1878=LMG 5863=NCPPB 3839=ICMP 11533), the proposal of sp. nov. (type strain KKH3=LMG 26003 =KCTC 23131) and sp. nov. (type strain CFBP 6617= LMG 21371=NCPPB 4609), to emend the description of (type strain CFBP 2046=LMG 2404=NCPPB 312=ICMP 5702), and to propose a novel species, sp. nov (type strain CFBP6051= NCPPB 3387=ICMP 9168) which includes the strains previously described as ‘Candidatus ’. Phenotypic analysis performed using Biolog GENIII plates on eight strains of sp. nov. and related strains completed our analysis.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003611
2019-10-01
2019-10-21
Loading full text...

Full text loading...

References

  1. Ma B, Hibbing ME, Kim HS, Reedy RM, Yedidia I et al. Host range and molecular phylogenies of the soft rot enterobacterial genera Pectobacterium and dickeya. Phytopathology 2007;97:1150–1163 [CrossRef][PubMed]
    [Google Scholar]
  2. Zhang Y, Fan Q, Loria R. A re-evaluation of the taxonomy of phytopathogenic genera Dickeya and Pectobacterium using whole-genome sequencing data. Syst Appl Microbiol 2016;39:252–259 [CrossRef][PubMed]
    [Google Scholar]
  3. Pédron J, Bertrand C, Taghouti G, Portier P, Barny MA. Pectobacterium aquaticum sp. nov., isolated from waterways. Int J Syst Evol Microbiol 2019;69:745–751 [CrossRef][PubMed]
    [Google Scholar]
  4. Nabhan S, de Boer SH, Maiss E, Wydra K. Pectobacterium aroidearum sp. nov., a soft rot pathogen with preference for monocotyledonous plants. Int J Syst Evol Microbiol 2013;63:2520–2525 [CrossRef][PubMed]
    [Google Scholar]
  5. Gardan L, Gouy C, Christen R, Samson R. Elevation of three subspecies of Pectobacterium carotovorum to species level: Pectobacterium atrosepticum sp. nov., Pectobacterium betavasculorum sp. nov. and Pectobacterium wasabiae sp. nov. Int J Syst Evol Microbiol 2003;53:381–391 [CrossRef][PubMed]
    [Google Scholar]
  6. Alcorn SM, Orum TV, Steigerwalt AG, Foster JL, Fogleman JC et al. Taxonomy and pathogenicity of Erwinia cacticida sp. nov. Int J Syst Bacteriol 1991;41:197–212 [CrossRef][PubMed]
    [Google Scholar]
  7. Oulghazi S, Cigna J, Lau YY, Moumni M, Chan KG et al. Transfer of the waterfall source isolate Pectobacterium carotovorum M022 to Pectobacterium fontis sp. nov., a deep-branching species within the genus Pectobacterium. Int J Syst Evol Microbiol 2019;69:470–475 [CrossRef][PubMed]
    [Google Scholar]
  8. Khayi S, Cigna J, Chong TM, Quêtu-Laurent A, Chan KG et al. Transfer of the potato plant isolates of Pectobacterium wasabiae to Pectobacterium parmentieri sp. nov. Int J Syst Evol Microbiol 2016;66:5379–5383 [CrossRef][PubMed]
    [Google Scholar]
  9. Dees MW, Lysøe E, Rossmann S, Perminow J, Brurberg MB. Pectobacterium polaris sp. nov., isolated from potato (Solanum tuberosum). Int J Syst Evol Microbiol 2017;67:5222–5229 [CrossRef][PubMed]
    [Google Scholar]
  10. Waleron M, Misztak A, Waleron M, Jonca J, Furmaniak M et al. Pectobacterium polonicum sp. nov. isolated from vegetable fields. Int J Syst Evol Microbiol 2019;69:1751–1759 [CrossRef][PubMed]
    [Google Scholar]
  11. Sarfraz S, Riaz K, Oulghazi S, Cigna J, Sahi ST et al. Pectobacterium punjabense sp. nov., isolated from blackleg symptoms of potato plants in Pakistan. Int J Syst Evol Microbiol 2018;68:3551–3556 [CrossRef][PubMed]
    [Google Scholar]
  12. Waleron M, Misztak A, Waleron M, Franczuk M, Wielgomas B et al. Transfer of Pectobacterium carotovorum subsp. carotovorum strains isolated from potatoes grown at high altitudes to Pectobacterium peruviense sp. nov. Syst Appl Microbiol 2018;41:85–93 [CrossRef][PubMed]
    [Google Scholar]
  13. Waleron M, Misztak A, Waleron M, Franczuk M, Jońca J et al. Pectobacterium zantedeschiae sp. nov. a new species of a soft rot pathogen isolated from Calla lily (Zantedeschia spp.). Syst Appl Microbiol 2019;42:275–283 [CrossRef][PubMed]
    [Google Scholar]
  14. Nabhan S, de Boer SH, Maiss E, Wydra K. Taxonomic relatedness between Pectobacterium carotovorum subsp. carotovorum, Pectobacterium carotovorum subsp. odoriferum and Pectobacterium carotovorum subsp. brasiliense subsp. nov. J Appl Microbiol 2012;113:904–913 [CrossRef][PubMed]
    [Google Scholar]
  15. Koh YJ, Kim GH, Lee YS, Sohn SH, Koh HS et al. Pectobacterium carotovorum subsp. actinidiae subsp. nov., a new bacterial pathogen causing canker-like symptoms in yellow kiwifruit, Actinidia chinensis. New Zealand Journal of Crop and Horticultural Science 2012;40:269–279 [CrossRef]
    [Google Scholar]
  16. Shirshikov FV, Korzhenkov AA, Miroshnikov KK, Kabanova AP, Barannik AP et al. Draft genome sequences of new genomospecies "Candidatus Pectobacterium maceratum" strains, which cause soft rot in plants. Genome Announc 2018;6:e00260-18 [CrossRef][PubMed]
    [Google Scholar]
  17. Parker CT, Tindall BJ, Garrity GM. International code of nomenclature of prokaryotes. Int J Syst Evol Microbiol 2019;1A:S1–S111
    [Google Scholar]
  18. Waleron M, Waleron K, Podhajska AJ, Lojkowska E. Genotyping of bacteria belonging to the former Erwinia genus by PCR-RFLP analysis of a recA gene fragment. Microbiology 2002;148:583–595 [CrossRef][PubMed]
    [Google Scholar]
  19. Sławiak M, van Beckhoven JRCM, Speksnijder AGCL, Czajkowski R, Grabe G et al. Biochemical and genetical analysis reveal a new clade of biovar 3 Dickeya spp. strains isolated from potato in Europe. Eur J Plant Pathol 2009;125:245–261 [CrossRef]
    [Google Scholar]
  20. Aziz RK, Bartels D, Best AA, Dejongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008;9:75 [CrossRef][PubMed]
    [Google Scholar]
  21. Delcher AL, Harmon D, Kasif S, White O, Salzberg SL. Improved microbial gene identification with GLIMMER. Nucleic Acids Res 1999;27:4636–4641 [CrossRef][PubMed]
    [Google Scholar]
  22. Pritchard L, Glover RH, Humphris S, Elphinstone JG, Toth IK. Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens. Analytical Methods 2016;8:12–24 [CrossRef]
    [Google Scholar]
  23. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef][PubMed]
    [Google Scholar]
  24. Hauben L, Moore ER, Vauterin L, Steenackers M, Mergaert J et al. Phylogenetic position of phytopathogens within the Enterobacteriaceae. Syst Appl Microbiol 1998;21:384–397 [CrossRef][PubMed]
    [Google Scholar]
  25. Hélias V, Hamon P, Huchet E, Wolf JVD, Andrivon D. Two new effective semiselective crystal violet pectate media for isolation of Pectobacterium and Dickeya: Isolating pectolytic bacteria on CVP. Plant Pathol 2012;61:339–345
    [Google Scholar]
  26. Miele V, Penel S, Duret L. Ultra-fast sequence clustering from similarity networks with SiLiX. BMC Bioinformatics 2011;12:116 [CrossRef][PubMed]
    [Google Scholar]
  27. Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 2004;5:113 [CrossRef][PubMed]
    [Google Scholar]
  28. Gouy M, Guindon S, Gascuel O. SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 2010;27:221–224 [CrossRef][PubMed]
    [Google Scholar]
  29. Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 2000;17:540–552 [CrossRef][PubMed]
    [Google Scholar]
  30. Gascuel O. BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. Mol Biol Evol 1997;14:685–695 [CrossRef][PubMed]
    [Google Scholar]
  31. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  32. Jones LR. A soft rot of carrot and other vegetables caused by Bacillus carotovorus. Vt Agric Exp Stn Annu Rep 1901;13:299–332
    [Google Scholar]
  33. Gallois A, Samson R, Ageron E, Grimont PAD. Erwinia carotovora subsp. odorifera subsp. nov., associated with odorous soft rot of chicory (Cichorium intybus L.). Int J Syst Bacteriol 1992;42:582–588 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003611
Loading
/content/journal/ijsem/10.1099/ijsem.0.003611
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Supplementary File 2

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error