1887

Abstract

A novel Gram-stain-positive actinobacterial strain, designated C9-28, was isolated from soil sampled in a natural cave on Jeju Island, Republic of Korea. Strain C9-28 morphologically exhibited a rod–coccus life cycle and grew at 10–37 °C (optimum, 30 °C), pH 6–9 (optimum, pH 7) and 0–3 % (optimum, absence of NaCl). In the maximum-likelihood tree based on 16S rRNA gene sequences, strain C9-28 formed a sublineage between a clade and the type strain of . The closest relatives of strain C9-28 were the type strains of (98.88 % 16S rRNA gene sequence similarity), (98.88 %) and (98.60 %). The phylogenomic tree based on whole genome sequences supported the distinct position of the novel strain within the genus . The following chemotaxonomic characteristics also supported the assignment to the genus: -diaminopimelic acid; arabinose and galactose in whole-cell hydrolysates; the predominant menaquinone of MK-8(H); and polar lipids including diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, phosphatidylinositol mannoside, three unidentified glycolipids and two unidentified lipids. The predominant cellular fatty acids were C, summed feature 3 (Cω7 and/or Cω6), Cω9 and C. Based on the values of average nucleotide identity and digital DNA–DNA hybridization from whole genome sequences, and DNA–DNA hybridization between the isolate and the closest relatives, strain C9-28 (=KACC 19823=DSM 107559) represents a novel species of the genus , for which the name sp. nov. is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003601
2019-10-01
2019-10-21
Loading full text...

Full text loading...

References

  1. Zopf W. Uber Ausscheidung von Fettfarbstoffen (Lipochromen) seitens gewisser Spaltpilze. Ber Duet Bot Ges 1891;9:22–28
    [Google Scholar]
  2. Jones AL, Goodfellow M. et al. Genus Rhodococcus. In Goodfellow M, Kämpfer P, Busse H-J, Trujillo ME, Suzuki K, Ludwig W. (editors) Bergey's Manual of Systematic Bacteriology, 2nded.vol. 5 New York: Springer; 2012; pp.pp. 437–.464
    [Google Scholar]
  3. Adachi K, Katsuta A, Matsuda S, Peng X, Misawa N et al. Smaragdicoccus niigatensis gen. nov., sp. nov., a novel member of the suborder Corynebacterineae. Int J Syst Evol Microbiol 2007;57:297–301 [CrossRef][PubMed]
    [Google Scholar]
  4. Kämpfer P, Dott W, Martin K, Glaeser SP. Rhodococcus defluvii sp. nov., isolated from wastewater of a bioreactor and formal proposal to reclassify [Corynebacterium hoagii] and Rhodococcus equi as Rhodococcus hoagii comb. nov. Int J Syst Evol Microbiol 2014;64:755–761 [CrossRef][PubMed]
    [Google Scholar]
  5. Garrity GM. Conservation of Rhodococcus equi (Magnusson 1923) Goodfellow and Alderson 1977 and rejection of Corynebacterium hoagii (Morse 1912) Eberson 1918. Int J Syst Evol Microbiol 2014;64:311–312 [CrossRef][PubMed]
    [Google Scholar]
  6. Táncsics A, Benedek T, Farkas M, Máthé I, Márialigeti K et al. Sequence analysis of 16S rRNA, gyrB and catA genes and DNA-DNA hybridization reveal that Rhodococcus jialingiae is a later synonym of Rhodococcus qingshengii. Int J Syst Evol Microbiol 2014;64:298–301 [CrossRef][PubMed]
    [Google Scholar]
  7. Nouioui I, Carro L, García-López M, Meier-Kolthoff JP, Woyke T et al. Genome-Based Taxonomic Classification of the Phylum Actinobacteria. Front Microbiol 2018;9:9 [CrossRef][PubMed]
    [Google Scholar]
  8. Wang YX, Wang HB, Zhang YQ, Xu LH, Jiang CL et al. Rhodococcus kunmingensis sp. nov., an actinobacterium isolated from a rhizosphere soil. Int J Syst Evol Microbiol 2008;58:1467–1471 [CrossRef][PubMed]
    [Google Scholar]
  9. Li SH, Yu XY, Park DJ, Hozzein WN, Kim CJ et al. Rhodococcus soli sp. nov., an actinobacterium isolated from soil using a resuscitative technique. Antonie Van Leeuwenhoek 2015;107:357–366 [CrossRef][PubMed]
    [Google Scholar]
  10. Ma J, Zhang L, Wang G, Zhang S, Zhang X et al. Rhodococcus gannanensis sp. nov., a novel endophytic actinobacterium isolated from root of sunflower (Helianthus annuus L.). Antonie Van Leeuwenhoek 2017;110:1113–1120 [CrossRef][PubMed]
    [Google Scholar]
  11. Ramaprasad EVV, Mahidhara G, Sasikala C, Ramana CV. Rhodococcus electrodiphilus sp. nov., a marine electro active actinobacterium isolated from coral reef. Int J Syst Evol Microbiol 2018;68:2644–2649 [CrossRef][PubMed]
    [Google Scholar]
  12. Chaudhary DK, Kim J. Rhodococcus olei sp. nov., with the ability to degrade petroleum oil, isolated from oil-contaminated soil. Int J Syst Evol Microbiol 2018;68:1749–1756 [CrossRef][PubMed]
    [Google Scholar]
  13. Ko KS, Kim Y, Seong CN, Lee SD. Rhodococcus antrifimi sp. nov., isolated from dried bat dung of a cave. Int J Syst Evol Microbiol 2015;65:4043–4048 [CrossRef][PubMed]
    [Google Scholar]
  14. Lee SD. Antricoccus suffuscus gen. nov., sp. nov., isolated from a natural cave. Int J Syst Evol Microbiol 2015;65:4410–4416 [CrossRef][PubMed]
    [Google Scholar]
  15. Ko DH, Lee SD. Angustibacter speluncae sp. nov., isolated from a lava cave stalactite. Int J Syst Evol Microbiol 2017;67:3283–3288 [CrossRef][PubMed]
    [Google Scholar]
  16. Lee SD. Conexibacter stalactiti sp. nov., isolated from stalactites in a lava cave and emended description of the genus Conexibacter. Int J Syst Evol Microbiol 2017;67:3214–3218 [CrossRef][PubMed]
    [Google Scholar]
  17. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966;16:313–340 [CrossRef]
    [Google Scholar]
  18. MacFaddin JF. Biochemical Tests for Identification of Medical Bacteria, 2nd ed. Baltimore: Williams & Wilkins; 1980
    [Google Scholar]
  19. Gordon RE, Barnett DA, Handerhan JE, Pang CH-N. Nocardia coeliaca, Nocardia autotrophica, and the Nocardin Strain. Int J Syst Bacteriol 1974;24:54–63 [CrossRef]
    [Google Scholar]
  20. Hopwood DA, Bibb MJ, Chater KF, Kieser T, Bruton CJ et al. Genetic Manipulation of Streptomyces. A Laboratory Manual Norwich: John Innes Foundation; 1985
    [Google Scholar]
  21. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;24:4876–4882
    [Google Scholar]
  22. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  23. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989;39:224–229 [CrossRef]
    [Google Scholar]
  24. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019;10:2182 [CrossRef][PubMed]
    [Google Scholar]
  25. Lefort V, Desper R, Gascuel O. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol 2015;32:2798–2800 [CrossRef][PubMed]
    [Google Scholar]
  26. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef][PubMed]
    [Google Scholar]
  27. Farris JS. Estimating Phylogenetic Trees from Distance Matrices. Am Nat 1972;106:645–668 [CrossRef]
    [Google Scholar]
  28. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989;39:159–167 [CrossRef]
    [Google Scholar]
  29. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009;106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  30. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987;37:463–464
    [Google Scholar]
  31. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974;28:226–231[PubMed]
    [Google Scholar]
  32. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  33. Minnikin DE, Patel PV, Alshamaony L, Goodfellow M. Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 1977;27:104–117 [CrossRef]
    [Google Scholar]
  34. Kroppenstedt RM. Fatty acid and menaquinone analysis of actinomycetes and related organisms. In Goodfellow M, Minnikin DE. (editors) Chemical Methods in Bacterial Systematics. London: Academic Press 1985; pp.173–199
    [Google Scholar]
  35. Minnikin DE, Hutchinson IG, Caldicott AB, Goodfellow M. Thin-layer chromatography of methanolysates of mycolic acid-containing bacteria. J Chromatogr A 1980;188:221–233 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003601
Loading
/content/journal/ijsem/10.1099/ijsem.0.003601
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error