1887

Abstract

A Gram-stain-negative, aerobic, motile and rod-shaped bacterial strain, designated OISW-25, was isolated from seawater in Republic of Korea. Strain OISW-25 grew optimally at 25 °C and in the presence of 2.0 % (w/v) NaCl. The phylogenetic trees based on 16S rRNA gene sequences showed that strain OISW-25 fell within the clade comprising the type strains of species. Strain OISW-25 exhibited 16S rRNA gene sequence similarity values of 97.5, 97.2 and 97.1 % to the type strains of , and , respectively, and of 93.6–96.6 % to the type strains of the other species. The average nucleotide identity values between strain OISW-25 and ATCC BAA-637 and two non-type strains of were 78.16–79.35 % and DNA–DNA relatedness value of strain OISW-25 with the type strain of was 17 %. The DNA G+C content of strain OISW-25 was 39.2 mol% (HPLC) or 38.7 mol% (genome data). Strain OISW-25 contained Q-8 as the predominant ubiquinone and summed feature 3 (C 7 and/or C 6) and C as the major fatty acids. The major polar lipids of strain OISW-25 were phosphatidylethanolamine and phosphatidylglycerol. Distinguished phenotypic properties, along with the phylogenetic and genetic distinctiveness, revealed that strain OISW-25 is distinct from species. On the basis of the data presented, strain OISW-25 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is OISW-25 (=KCTC 62426=NBRC 113187).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003590
2019-10-01
2019-10-21
Loading full text...

Full text loading...

References

  1. Deming JW, Somers LK, Straube WL, Swartz DG, Macdonell MT. Isolation of an obligately barophilic bacterium and description of a new genus, Colwellia gen. nov. Syst Appl Microbiol 1988;10:152–160 [CrossRef]
    [Google Scholar]
  2. Bowman JP, Gosink JJ, Mccammon SA, Lewis TE, Nichols DS et al. Colwellia demingiae sp. nov., Colwellia hornerae sp. nov., Colwellia rossensis sp. nov. and Colwellia psychrotropica sp. nov.: psychrophilic Antarctic species with the ability to synthesize docosahexaenoic acid (22: 63). Int J Syst Bacteriol 1998;48:1171–1180 [CrossRef]
    [Google Scholar]
  3. Anzai Y, Kim H, Park JY, Wakabayashi H, Oyaizu H. Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int J Syst Evol Microbiol 2000;50 Pt 4:1563–1589 [CrossRef][PubMed]
    [Google Scholar]
  4. Parte AC. LPSN - List of Prokaryotic names with Standing in Nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 2018;68:1825–1829 [CrossRef][PubMed]
    [Google Scholar]
  5. Yumoto I, Kawasaki K, Iwata H, Matsuyama H, Okuyama H. Assignment of Vibrio sp. strain ABE-1 to Colwellia maris sp. nov., a new psychrophilic bacterium. Int J Syst Bacteriol 1998;48 Pt 4:1357–1362 [CrossRef][PubMed]
    [Google Scholar]
  6. Nogi Y, Hosoya S, Kato C, Horikoshi K. Colwellia piezophila sp. nov., a novel piezophilic species from deep-sea sediments of the Japan Trench. Int J Syst Evol Microbiol 2004;54:1627–1631 [CrossRef][PubMed]
    [Google Scholar]
  7. Jung SY, Oh TK, Yoon JH. Colwellia aestuarii sp. nov., isolated from a tidal flat sediment in Korea. Int J Syst Evol Microbiol 2006;56:33–37 [CrossRef][PubMed]
    [Google Scholar]
  8. Zhang DC, Yu Y, Xin YH, Liu HC, Zhou PJ et al. Colwellia polaris sp. nov., a psychrotolerant bacterium isolated from Arctic sea ice. Int J Syst Evol Microbiol 2008;58:1931–1934 [CrossRef][PubMed]
    [Google Scholar]
  9. Choi EJ, Kwon HC, Koh HY, Kim YS, Yang HO. Colwellia asteriadis sp. nov., a marine bacterium isolated from the starfish Asterias amurensis. Int J Syst Evol Microbiol 2010;60:1952–1957 [CrossRef][PubMed]
    [Google Scholar]
  10. Yu Y, Li HR, Zeng YX. Colwellia chukchiensis sp. nov., a psychrotolerant bacterium isolated from the Arctic Ocean. Int J Syst Evol Microbiol 2011;61:850–853 [CrossRef][PubMed]
    [Google Scholar]
  11. Kim YO, Park S, Nam BH, Jung YT, Kim DG et al. Colwellia meonggei sp. nov., a novel gammaproteobacterium isolated from sea squirt Halocynthia roretzi. Antonie van Leeuwenhoek 2013;104:1021–1027 [CrossRef][PubMed]
    [Google Scholar]
  12. Liu Y, Liu LZ, Zhong ZP, Zhou YG, Liu Y et al. Colwellia aquaemaris sp. nov., isolated from the Cynoglossus semilaevis culture tank in a recirculating mariculture system. Int J Syst Evol Microbiol 2014;64:3926–3930 [CrossRef][PubMed]
    [Google Scholar]
  13. Park S, Jung YT, Yoon JH. Colwellia sediminilitoris sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2016;66:3258–3263 [CrossRef][PubMed]
    [Google Scholar]
  14. Kim YO, Park IS, Park S, Nam BH, Jung YT et al. Colwellia mytili sp. nov., isolated from mussel Mytilus edulis. Int J Syst Evol Microbiol 2017;67:31–36 [CrossRef][PubMed]
    [Google Scholar]
  15. Kusube M, Kyaw TS, Tanikawa K, Chastain RA, Hardy KM et al. Colwellia marinimaniae sp. nov., a hyperpiezophilic species isolated from an amphipod within the Challenger Deep, Mariana Trench. Int J Syst Evol Microbiol 2017;67:824–831 [CrossRef][PubMed]
    [Google Scholar]
  16. Xu ZX, Zhang HX, Han JR, Dunlap CA, Rooney AP et al. Colwellia agarivorans sp. nov., an agar-digesting marine bacterium isolated from coastal seawater. Int J Syst Evol Microbiol 2017;67:1969–1974 [CrossRef][PubMed]
    [Google Scholar]
  17. Zhang C, Guo W, Wang Y, Chen X. Colwellia beringensis sp. nov., a psychrophilic bacterium isolated from the Bering Sea. Int J Syst Evol Microbiol 2017;67:5102–5107 [CrossRef][PubMed]
    [Google Scholar]
  18. Christiansen L, Bech PK, Schultz-Johansen M, Martens HJ, Stougaard P. Colwellia echini sp. nov., an agar- and carrageenan-solubilizing bacterium isolated from sea urchin. Int J Syst Evol Microbiol 2018;68:687–691 [CrossRef][PubMed]
    [Google Scholar]
  19. Yoon J-H, Kim H, Kim S-B, Kim H-J, Kim WY et al. Identification of Saccharomonospora strains by the use of genomic DNA fragments and rRNA gene probes. Int J Syst Bacteriol 1996;46:502–505 [CrossRef]
    [Google Scholar]
  20. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012;19:455–477 [CrossRef][PubMed]
    [Google Scholar]
  21. Lee I, Chalita M, Ha SM, Na SI, Yoon SH et al. ContEst16S: an algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int J Syst Evol Microbiol 2017;67:2053–2057 [CrossRef][PubMed]
    [Google Scholar]
  22. Yoon J-H, Lee ST, Kim S-B, Kim WY, Goodfellow M et al. Restriction fragment length polymorphism analysis of PCR-amplified 16S ribosomal DNA for rapid identification of Saccharomonospora strains. Int J Syst Bacteriol 1997;47:111–114 [CrossRef]
    [Google Scholar]
  23. Yoon JH, Kang KH, Park YH. Psychrobacter jeotgali sp. nov., isolated from jeotgal, a traditional Korean fermented seafood. Int J Syst Evol Microbiol 2003;53:449–454 [CrossRef][PubMed]
    [Google Scholar]
  24. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017;110:1281–1286 [CrossRef][PubMed]
    [Google Scholar]
  25. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989;39:224–229 [CrossRef]
    [Google Scholar]
  26. Komagata K, Suzuki K. Lipids and cell-wall analysis in bacterial systematics. Methods Microbiol 1987;19:161–207
    [Google Scholar]
  27. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  28. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  29. Embley TM, Wait R. Structural lipids of eubacteria. In Goodfellow M, O’Donnell AG. (editors) Modern Microbial Methods. Chemical Methods in Prokaryotic Systematics Chichester: John Wiley & Sons; 1994; pp.121–161
    [Google Scholar]
  30. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984;25:125–128 [CrossRef]
    [Google Scholar]
  31. Park S, Won SM, Kim H, Park DS, Yoon JH. Aestuariivita boseongensis gen. nov., sp. nov., isolated from a tidal flat sediment. Int J Syst Evol Microbiol 2014;64:2969–2974 [CrossRef][PubMed]
    [Google Scholar]
  32. Lányí B. Classical and rapid identification methods for medically important bacteria. Methods Mocrobiol 1987;19:1–67
    [Google Scholar]
  33. Bruns A, Rohde M, Berthe-Corti L. Muricauda ruestringensis gen. nov., sp. nov., a facultatively anaerobic, appendaged bacterium from German North Sea intertidal sediment. Int J Syst Evol Microbiol 2001;51:1997–2006 [CrossRef][PubMed]
    [Google Scholar]
  34. Barrow GI, Feltham RKA. Cowan and Steel’s Manual for the Identification of Medical Bacteria, 3rd ed. Cambridge: Cambridge University Press; 1993
    [Google Scholar]
  35. Baumann P, Baumann L. The marine Gram-negative eubacteria: genera Photobacterium, Beneckea, Alteromonas, Pseudomonas, and Alcaligenes. In Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG et al. (editors) The Prokaryotes Berlin: Springer; 1981; pp.1302–1331
    [Google Scholar]
  36. Cohen-Bazire G, Sistrom WR, Stanier RY. Kinetic studies of pigment synthesis by non-sulfur purple bacteria. J Cell Comp Physiol 1957;49:25–68 [CrossRef][PubMed]
    [Google Scholar]
  37. Staley JT. Prosthecomicrobium and Ancalomicrobium: new prosthecate freshwater bacteria. J Bacteriol 1968;95:1921–1942[PubMed]
    [Google Scholar]
  38. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc Committee on Reconciliation of Approaches to Bacterial Systematics. Int J Syst Evol Microbiol 1987;37:463–464 [CrossRef]
    [Google Scholar]
  39. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994;44:846–849 [CrossRef]
    [Google Scholar]
  40. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018;68:461–466 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003590
Loading
/content/journal/ijsem/10.1099/ijsem.0.003590
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error