1887

Abstract

A Gram-stain-positive bacterial strain, 395-6.2, was isolated from traditional pickle in Heilongjiang Province, PR China. The bacterium was characterised by a polyphasic approach, including 16S rRNA gene sequence analysis, pheS gene sequence analysis, rpoA gene sequence analysis, fatty acid methyl ester (FAME) analysis, determination of DNA G+C content, average nucleotide identity (ANI) analysis, in silico DNA–DNA hybridisation (isDDH) and an analysis of phenotypic features. Analysis of the 16S rRNA gene sequence showed that strain 395-6.2 was phylogenetically related to Lactobacillus farciminis , Lactobacillus formosensis , Lactobacillus futsaii , Lactobacillus crustorum , Lactobacillus nuruki , Lactobacillus heilongjiangensis , Lactobacillus musae , Lactobacillus nantensis , Lactobacillus mindensis , Lactobacillus kimchiensis , Lactobacillus zhachilii, Lactobacillus alimentarius , Lactobacillus bobalius , Lactobacillus kimchii and Lactobacillus paralimentarius . Strain 395-6.2 exhibited 95.7–99.4 % 16S rRNA gene sequence similarities, 85.0–94.0 % pheS gene sequence similarities, 94.2–98.0 % rpoA gene sequence similarities to type strains of phylogenetically related species. ANI and isDDH values between strain 395-6.2 and type strains of phylogenetically related species were 77.9–87.1 % and 22.5–33.5 %, respectively. Based upon the data obtained in the present study, a novel species, Lactobacillus huachuanensis sp. nov., is proposed and the type strain is 395-6.2 (=CCM 8927=NCIMB 15188=LMG 31179).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003563
2019-06-26
2019-08-19
Loading full text...

Full text loading...

References

  1. Park KY, Kim BK. Lactic acid bacteria in vegetable fermentations. In Lahtinen S, Ouwehand AC, Salminen S, Von Wright A. (editors) Lactic Acid Bacteria: Microbiological and Functional Aspects, 4th ed. Boca Raton: CRC Press Taylor and Francis Group; 2012; pp. 187– 211
    [Google Scholar]
  2. Huys G, Daniel HM, De Vuyst L. Taxonomy and biodiversity of sourdough yeasts and lactic acid bacteria. In Gobbetti M, Gänzle M. (editors) Handbook on Sourdough Biotechnology Boston: Springer; 2013; pp. 105– 154
    [Google Scholar]
  3. Liu W, Pang H, Zhang H, Cai Y. Biodiversity of lactic acid bacteria. In Zhang H, Cai Y. (editors) Lactic Acid Bacteria: Fundamentals and Practice Dordrecht: Springer; 2014; pp. 103– 203
    [Google Scholar]
  4. Fontana C, Fadda S, Cocconcelli PS, Vignolo G. Lactic acid bacteria in meat fermentations. In Lahtinen S, Ouwehand AC, Salminen S, Von Wright A. (editors) Lactic Acid Bacteria: Microbiological and Functional Aspects, 4th ed. Boca Raton: CRC Press Taylor and Francis Group; 2012; pp. 247– 264
    [Google Scholar]
  5. Zhao W, Gu CT. Lactobacillus hulanensis sp. nov., isolated from suancai, a traditional Chinese pickle. Int J Syst Evol Microbiol 2019; DOI [CrossRef] [PubMed]
    [Google Scholar]
  6. Liou JS, Huang CH, Wang CL, Lee AY, Mori K et al. Lactobacillus suantsaii sp. nov., isolated from suan-tsai, a traditional Taiwanese fermented mustard green. Int J Syst Evol Microbiol 2019;69: 1484– 1489 [CrossRef] [PubMed]
    [Google Scholar]
  7. Guu JR, Wang LT, Hamada M, Wang C, Lin RW et al. Lactobacillus bambusae sp. nov., isolated from traditional fermented ma bamboo shoots in Taiwan. Int J Syst Evol Microbiol 2018;68: 2424– 2430 [CrossRef] [PubMed]
    [Google Scholar]
  8. Jung MY, Lee SH, Lee M, Song JH, Chang JY. Lactobacillus allii sp. nov. isolated from scallion kimchi. Int J Syst Evol Microbiol 2017;67: 4936– 4942 [CrossRef] [PubMed]
    [Google Scholar]
  9. Mao Y, Chen M, Horvath P. Lactobacillus herbarum sp. nov., a species related to Lactobacillus plantarum. Int J Syst Evol Microbiol 2015;65: 4682– 4688 [CrossRef] [PubMed]
    [Google Scholar]
  10. Ludwig W, Schleifer KH, Whitman WB. Taxonomic outline of the phylum Firmicutes. In De Vos P, Garrity G, Jones D, Krieg NR, Ludwig W et al. (editors) Bergey’s Manual® of Systematic Bacteriology New York: Springer; 2009; pp. 15– 17
    [Google Scholar]
  11. Gu CT, Li CY, Yang LJ, Huo GC. Lactobacillus heilongjiangensis sp. nov., isolated from Chinese pickle. Int J Syst Evol Microbiol 2013;63: 4094– 4099 [CrossRef] [PubMed]
    [Google Scholar]
  12. Mattarelli P, Holzapfel W, Franz CM, Endo A, Felis GE et al. Recommended minimal standards for description of new taxa of the genera Bifidobacterium, Lactobacillus and related genera. Int J Syst Evol Microbiol 2014;64: 1434– 1451 [CrossRef] [PubMed]
    [Google Scholar]
  13. Krieg NR, Padgett PJ. Phenotypic and physiological characterization methods. Methods Microbiol 2011;38: 15– 60
    [Google Scholar]
  14. Miyashita M, Yukphan P, Chaipitakchonlatarn W, Malimas T, Sugimoto M et al. Lactobacillus plajomi sp. nov. and Lactobacillus modestisalitolerans sp. nov., isolated from traditional fermented foods. Int J Syst Evol Microbiol 2015;65: 2485– 2490 [CrossRef] [PubMed]
    [Google Scholar]
  15. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 1983;29: 319– 322 [CrossRef]
    [Google Scholar]
  16. Tak EJ, Kim HS, Lee JY, Kang W, Hyun DW et al. Vagococcus martis sp. nov., isolated from the small intestine of a marten, Martes flavigula. Int J Syst Evol Microbiol 2017;67: 3398– 3402 [CrossRef] [PubMed]
    [Google Scholar]
  17. An D, Cai S, Dong X. Actinomyces ruminicola sp. nov., isolated from cattle rumen. Int J Syst Evol Microbiol 2006;56: 2043– 2048 [CrossRef] [PubMed]
    [Google Scholar]
  18. Naser SM, Thompson FL, Hoste B, Gevers D, Dawyndt P et al. Application of multilocus sequence analysis (MLSA) for rapid identification of Enterococcus species based on rpoA and pheS genes. Microbiology 2005;151: 2141– 2150 [CrossRef] [PubMed]
    [Google Scholar]
  19. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994;22: 4673– 4680 [CrossRef] [PubMed]
    [Google Scholar]
  20. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4: 406– 425 [CrossRef] [PubMed]
    [Google Scholar]
  21. Kishino H, Hasegawa M. Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in hominoidea. J Mol Evol 1989;29: 170– 179 [CrossRef] [PubMed]
    [Google Scholar]
  22. Rzhetsky A, Nei M. A simple method for estimating and testing minimum evolution trees. Mol Biol Evol 1992;9: 945– 967
    [Google Scholar]
  23. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018;35: 1547– 1549 [CrossRef] [PubMed]
    [Google Scholar]
  24. Naser SM, Dawyndt P, Hoste B, Gevers D, Vandemeulebroecke K et al. Identification of lactobacilli by pheS and rpoA gene sequence analyses. Int J Syst Evol Microbiol 2007;57: 2777– 2789 [CrossRef] [PubMed]
    [Google Scholar]
  25. Stackebrandt E, Goebel BM. Taxonomic Note: A Place for DNA-DNA Reassociation and 16S rRNA Sequence Analysis in the Present Species Definition in Bacteriology. Int J Syst Evol Microbiol 1994;44: 846– 849 [CrossRef]
    [Google Scholar]
  26. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014;64: 346– 351 [CrossRef] [PubMed]
    [Google Scholar]
  27. Coil D, Jospin G, Darling AE. A5-miseq: an updated pipeline to assemble microbial genomes from Illumina MiSeq data. Bioinformatics 2015;31: 587– 589 [CrossRef] [PubMed]
    [Google Scholar]
  28. Aziz RK, Bartels D, Best AA, Dejongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008;9: 75 [CrossRef] [PubMed]
    [Google Scholar]
  29. Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 2007;35: W182– W185 [CrossRef] [PubMed]
    [Google Scholar]
  30. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016;66: 1100– 1103 [CrossRef] [PubMed]
    [Google Scholar]
  31. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017;110: 1281– 1286 [CrossRef] [PubMed]
    [Google Scholar]
  32. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007;57: 81– 91 [CrossRef] [PubMed]
    [Google Scholar]
  33. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009;106: 19126– 19131 [CrossRef] [PubMed]
    [Google Scholar]
  34. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14: 60 [CrossRef] [PubMed]
    [Google Scholar]
  35. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE, USA: Microbial ID Inc; 1990
    [Google Scholar]
  36. Kandler O, Weiss N. Genus Lactobacillus beijerinck 1901, 212AL. In Sneath PHA, Mair NS, Sharpe ME, Holt JG. (editors) Bergey’s Manual of Systematic Bacteriologyvol. 2 Baltimore: Williams & Wilkins; 1986; pp. 1209– 1234
    [Google Scholar]
  37. Chang CH, Chen YS, Lee TT, Chang YC, Yu B. Lactobacillus formosensis sp. nov., a lactic acid bacterium isolated from fermented soybean meal. Int J Syst Evol Microbiol 2015;65: 101– 106 [CrossRef] [PubMed]
    [Google Scholar]
  38. Chao SH, Kudo Y, Tsai YC, Watanabe K. Lactobacillus futsaii sp. nov., isolated from fu-tsai and suan-tsai, traditional Taiwanese fermented mustard products. Int J Syst Evol Microbiol 2012;62: 489– 494 [CrossRef] [PubMed]
    [Google Scholar]
  39. Scheirlinck I, van der Meulen R, van Schoor A, Huys G, Vandamme P et al. Lactobacillus crustorum sp. nov., isolated from two traditional Belgian wheat sourdoughs. Int J Syst Evol Microbiol 2007;57: 1461– 1467 [CrossRef] [PubMed]
    [Google Scholar]
  40. Heo J, Saitou S, Tamura T, Cho H, Kim JS et al. Lactobacilus nuruki sp. nov., isolated from Nuruk, a Korean fermentation starter. Int J Syst Evol Microbiol 2018;68: 3273– 3278 [CrossRef] [PubMed]
    [Google Scholar]
  41. Chen YS, Wang LT, Liao YJ, Lan YS, Chang CH et al. Lactobacillus musae sp. nov., a novel lactic acid bacterium isolated from banana fruits. Int J Syst Evol Microbiol 2017;67: 5144– 5149 [CrossRef] [PubMed]
    [Google Scholar]
  42. Valcheva R, Ferchichi MF, Korakli M, Ivanova I, Gänzle MG et al. Lactobacillus nantensis sp. nov., isolated from French wheat sourdough. Int J Syst Evol Microbiol 2006;56: 587– 591 [CrossRef] [PubMed]
    [Google Scholar]
  43. Ehrmann MA, Müller MR, Vogel RF. Molecular analysis of sourdough reveals Lactobacillus mindensis sp. nov. Int J Syst Evol Microbiol 2003;53: 7– 13 [CrossRef] [PubMed]
    [Google Scholar]
  44. Kim J, Kim JY, Kim MS, Roh SW, Bae JW. Lactobacillus kimchiensis sp. nov., isolated from a fermented food. Int J Syst Evol Microbiol 2013;63: 1355– 1359 [CrossRef] [PubMed]
    [Google Scholar]
  45. Zhang Z, Hou Q, Wang Y, Li W, Zhao H et al. Lactobacillus zhachilii sp. nov., a lactic acid bacterium isolated from Zha-Chili. Int J Syst Evol Microbiol 2019; [CrossRef] [PubMed]
    [Google Scholar]
  46. Mañes-Lázaro R, Ferrer S, Rodas AM, Urdiain M, Pardo I. Lactobacillus bobalius sp. nov., a lactic acid bacterium isolated from Spanish Bobal grape must. Int J Syst Evol Microbiol 2008;58: 2699– 2703 [CrossRef] [PubMed]
    [Google Scholar]
  47. Yoon JH, Kang SS, Mheen TI, Ahn JS, Lee HJ et al. Lactobacillus kimchii sp. nov., a new species from kimchi. Int J Syst Evol Microbiol 2000;50: 1789– 1795 [CrossRef] [PubMed]
    [Google Scholar]
  48. Cai Y, Okada H, Mori H, Benno Y, Nakase T. Lactobacillus paralimentarius sp. nov., isolated from sourdough. Int J Syst Bacteriol 1999;49: 1451– 1455 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003563
Loading
/content/journal/ijsem/10.1099/ijsem.0.003563
Loading

Data & Media loading...

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error