1887

Abstract

A Gram-stain-positive bacterial strain, 395-6.2, was isolated from traditional pickle in Heilongjiang Province, PR China. The bacterium was characterised by a polyphasic approach, including 16S rRNA gene sequence analysis, gene sequence analysis, gene sequence analysis, fatty acid methyl ester (FAME) analysis, determination of DNA G+C content, average nucleotide identity (ANI) analysis, DNA–DNA hybridisation (DDH) and an analysis of phenotypic features. Analysis of the 16S rRNA gene sequence showed that strain 395-6.2 was phylogenetically related to , , , , , , , , , , , , , and . Strain 395-6.2 exhibited 95.7–99.4 % 16S rRNA gene sequence similarities, 85.0–94.0 %  gene sequence similarities, 94.2–98.0 %  gene sequence similarities to type strains of phylogenetically related species. ANI and DDH values between strain 395-6.2 and type strains of phylogenetically related species were 77.9–87.1 % and 22.5–33.5 %, respectively. Based upon the data obtained in the present study, a novel species, sp. nov., is proposed and the type strain is 395-6.2 (=CCM 8927=NCIMB 15188=LMG 31179).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003563
2019-09-01
2020-05-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/9/2807.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003563&mimeType=html&fmt=ahah

References

  1. Park KY, Kim BK. Lactic acid bacteria in vegetable fermentations. In Lahtinen S, Ouwehand AC, Salminen S, Von Wright A. (editors) Lactic Acid Bacteria: Microbiological and Functional Aspects, 4th ed. Boca Raton: CRC Press Taylor and Francis Group; 2012; pp.187–211
    [Google Scholar]
  2. Huys G, Daniel HM, De Vuyst L. Taxonomy and biodiversity of sourdough yeasts and lactic acid bacteria. In Gobbetti M, Gänzle M. (editors) Handbook on Sourdough Biotechnology Boston: Springer; 2013; pp.105–154
    [Google Scholar]
  3. Liu W, Pang H, Zhang H, Cai Y. Biodiversity of lactic acid bacteria. In Zhang H, Cai Y. (editors) Lactic Acid Bacteria: Fundamentals and Practice Dordrecht: Springer; 2014; pp.103–203
    [Google Scholar]
  4. Fontana C, Fadda S, Cocconcelli PS, Vignolo G. Lactic acid bacteria in meat fermentations. In Lahtinen S, Ouwehand AC, Salminen S, Von Wright A. (editors) Lactic Acid Bacteria: Microbiological and Functional Aspects, 4th ed. Boca Raton: CRC Press Taylor and Francis Group; 2012; pp.247–264
    [Google Scholar]
  5. Zhao W, Gu CT. Lactobacillus hulanensis sp. nov., isolated from suancai, a traditional Chinese pickle. Int J Syst Evol Microbiol 2019; DOI [CrossRef][PubMed]
    [Google Scholar]
  6. Liou JS, Huang CH, Wang CL, Lee AY, Mori K et al. Lactobacillus suantsaii sp. nov., isolated from suan-tsai, a traditional Taiwanese fermented mustard green. Int J Syst Evol Microbiol 2019;69:1484–1489 [CrossRef][PubMed]
    [Google Scholar]
  7. Guu JR, Wang LT, Hamada M, Wang C, Lin RW et al. Lactobacillus bambusae sp. nov., isolated from traditional fermented ma bamboo shoots in Taiwan. Int J Syst Evol Microbiol 2018;68:2424–2430 [CrossRef][PubMed]
    [Google Scholar]
  8. Jung MY, Lee SH, Lee M, Song JH, Chang JY. Lactobacillus allii sp. nov. isolated from scallion kimchi. Int J Syst Evol Microbiol 2017;67:4936–4942 [CrossRef][PubMed]
    [Google Scholar]
  9. Mao Y, Chen M, Horvath P. Lactobacillus herbarum sp. nov., a species related to Lactobacillus plantarum. Int J Syst Evol Microbiol 2015;65:4682–4688 [CrossRef][PubMed]
    [Google Scholar]
  10. Ludwig W, Schleifer KH, Whitman WB. Taxonomic outline of the phylum Firmicutes. In De Vos P, Garrity G, Jones D, Krieg NR, Ludwig W et al. (editors) Bergey’s Manual® of Systematic Bacteriology New York: Springer; 2009; pp.15–17
    [Google Scholar]
  11. Gu CT, Li CY, Yang LJ, Huo GC. Lactobacillus heilongjiangensis sp. nov., isolated from Chinese pickle. Int J Syst Evol Microbiol 2013;63:4094–4099 [CrossRef][PubMed]
    [Google Scholar]
  12. Mattarelli P, Holzapfel W, Franz CM, Endo A, Felis GE et al. Recommended minimal standards for description of new taxa of the genera Bifidobacterium, Lactobacillus and related genera. Int J Syst Evol Microbiol 2014;64:1434–1451 [CrossRef][PubMed]
    [Google Scholar]
  13. Krieg NR, Padgett PJ. Phenotypic and physiological characterization methods. Methods Microbiol 2011;38:15–60
    [Google Scholar]
  14. Miyashita M, Yukphan P, Chaipitakchonlatarn W, Malimas T, Sugimoto M et al. Lactobacillus plajomi sp. nov. and Lactobacillus modestisalitolerans sp. nov., isolated from traditional fermented foods. Int J Syst Evol Microbiol 2015;65:2485–2490 [CrossRef][PubMed]
    [Google Scholar]
  15. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 1983;29:319–322 [CrossRef]
    [Google Scholar]
  16. Tak EJ, Kim HS, Lee JY, Kang W, Hyun DW et al. Vagococcus martis sp. nov., isolated from the small intestine of a marten, Martes flavigula. Int J Syst Evol Microbiol 2017;67:3398–3402 [CrossRef][PubMed]
    [Google Scholar]
  17. An D, Cai S, Dong X. Actinomyces ruminicola sp. nov., isolated from cattle rumen. Int J Syst Evol Microbiol 2006;56:2043–2048 [CrossRef][PubMed]
    [Google Scholar]
  18. Naser SM, Thompson FL, Hoste B, Gevers D, Dawyndt P et al. Application of multilocus sequence analysis (MLSA) for rapid identification of Enterococcus species based on rpoA and pheS genes. Microbiology 2005;151:2141–2150 [CrossRef][PubMed]
    [Google Scholar]
  19. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994;22:4673–4680 [CrossRef][PubMed]
    [Google Scholar]
  20. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  21. Kishino H, Hasegawa M. Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in hominoidea. J Mol Evol 1989;29:170–179 [CrossRef][PubMed]
    [Google Scholar]
  22. Rzhetsky A, Nei M. A simple method for estimating and testing minimum evolution trees. Mol Biol Evol 1992;9:945–967
    [Google Scholar]
  23. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018;35:1547–1549 [CrossRef][PubMed]
    [Google Scholar]
  24. Naser SM, Dawyndt P, Hoste B, Gevers D, Vandemeulebroecke K et al. Identification of lactobacilli by pheS and rpoA gene sequence analyses. Int J Syst Evol Microbiol 2007;57:2777–2789 [CrossRef][PubMed]
    [Google Scholar]
  25. Stackebrandt E, Goebel BM. Taxonomic Note: A Place for DNA-DNA Reassociation and 16S rRNA Sequence Analysis in the Present Species Definition in Bacteriology. Int J Syst Evol Microbiol 1994;44:846–849 [CrossRef]
    [Google Scholar]
  26. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014;64:346–351 [CrossRef][PubMed]
    [Google Scholar]
  27. Coil D, Jospin G, Darling AE. A5-miseq: an updated pipeline to assemble microbial genomes from Illumina MiSeq data. Bioinformatics 2015;31:587–589 [CrossRef][PubMed]
    [Google Scholar]
  28. Aziz RK, Bartels D, Best AA, Dejongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008;9:75 [CrossRef][PubMed]
    [Google Scholar]
  29. Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 2007;35:W182–W185 [CrossRef][PubMed]
    [Google Scholar]
  30. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016;66:1100–1103 [CrossRef][PubMed]
    [Google Scholar]
  31. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017;110:1281–1286 [CrossRef][PubMed]
    [Google Scholar]
  32. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007;57:81–91 [CrossRef][PubMed]
    [Google Scholar]
  33. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009;106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  34. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef][PubMed]
    [Google Scholar]
  35. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE, USA: Microbial ID Inc; 1990
    [Google Scholar]
  36. Kandler O, Weiss N. Genus Lactobacillus beijerinck 1901, 212AL. In Sneath PHA, Mair NS, Sharpe ME, Holt JG. (editors) Bergey’s Manual of Systematic Bacteriologyvol. 2 Baltimore: Williams & Wilkins; 1986; pp.1209–1234
    [Google Scholar]
  37. Chang CH, Chen YS, Lee TT, Chang YC, Yu B. Lactobacillus formosensis sp. nov., a lactic acid bacterium isolated from fermented soybean meal. Int J Syst Evol Microbiol 2015;65:101–106 [CrossRef][PubMed]
    [Google Scholar]
  38. Chao SH, Kudo Y, Tsai YC, Watanabe K. Lactobacillus futsaii sp. nov., isolated from fu-tsai and suan-tsai, traditional Taiwanese fermented mustard products. Int J Syst Evol Microbiol 2012;62:489–494 [CrossRef][PubMed]
    [Google Scholar]
  39. Scheirlinck I, van der Meulen R, van Schoor A, Huys G, Vandamme P et al. Lactobacillus crustorum sp. nov., isolated from two traditional Belgian wheat sourdoughs. Int J Syst Evol Microbiol 2007;57:1461–1467 [CrossRef][PubMed]
    [Google Scholar]
  40. Heo J, Saitou S, Tamura T, Cho H, Kim JS et al. Lactobacilus nuruki sp. nov., isolated from Nuruk, a Korean fermentation starter. Int J Syst Evol Microbiol 2018;68:3273–3278 [CrossRef][PubMed]
    [Google Scholar]
  41. Chen YS, Wang LT, Liao YJ, Lan YS, Chang CH et al. Lactobacillus musae sp. nov., a novel lactic acid bacterium isolated from banana fruits. Int J Syst Evol Microbiol 2017;67:5144–5149 [CrossRef][PubMed]
    [Google Scholar]
  42. Valcheva R, Ferchichi MF, Korakli M, Ivanova I, Gänzle MG et al. Lactobacillus nantensis sp. nov., isolated from French wheat sourdough. Int J Syst Evol Microbiol 2006;56:587–591 [CrossRef][PubMed]
    [Google Scholar]
  43. Ehrmann MA, Müller MR, Vogel RF. Molecular analysis of sourdough reveals Lactobacillus mindensis sp. nov. Int J Syst Evol Microbiol 2003;53:7–13 [CrossRef][PubMed]
    [Google Scholar]
  44. Kim J, Kim JY, Kim MS, Roh SW, Bae JW. Lactobacillus kimchiensis sp. nov., isolated from a fermented food. Int J Syst Evol Microbiol 2013;63:1355–1359 [CrossRef][PubMed]
    [Google Scholar]
  45. Zhang Z, Hou Q, Wang Y, Li W, Zhao H et al. Lactobacillus zhachilii sp. nov., a lactic acid bacterium isolated from Zha-Chili. Int J Syst Evol Microbiol 2019; [CrossRef][PubMed]
    [Google Scholar]
  46. Mañes-Lázaro R, Ferrer S, Rodas AM, Urdiain M, Pardo I. Lactobacillus bobalius sp. nov., a lactic acid bacterium isolated from Spanish Bobal grape must. Int J Syst Evol Microbiol 2008;58:2699–2703 [CrossRef][PubMed]
    [Google Scholar]
  47. Yoon JH, Kang SS, Mheen TI, Ahn JS, Lee HJ et al. Lactobacillus kimchii sp. nov., a new species from kimchi. Int J Syst Evol Microbiol 2000;50:1789–1795 [CrossRef][PubMed]
    [Google Scholar]
  48. Cai Y, Okada H, Mori H, Benno Y, Nakase T. Lactobacillus paralimentarius sp. nov., isolated from sourdough. Int J Syst Bacteriol 1999;49:1451–1455 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003563
Loading
/content/journal/ijsem/10.1099/ijsem.0.003563
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error